forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
distinctSubsequences.cpp
164 lines (150 loc) · 4.4 KB
/
distinctSubsequences.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Source : https://oj.leetcode.com/problems/distinct-subsequences/
// Author : Hao Chen
// Date : 2014-07-06
/**********************************************************************************
*
* Given a string S and a string T, count the number of distinct subsequences of T in S.
*
* A subsequence of a string is a new string which is formed from the original string
* by deleting some (can be none) of the characters without disturbing the relative positions
* of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
*
* Here is an example:
* S = "rabbbit", T = "rabbit"
*
* Return 3.
*
*
**********************************************************************************/
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <iostream>
#include <string>
#include <map>
#include <vector>
using namespace std;
//=====================
// Dynamic Programming
//=====================
//
// The idea as below:
//
// Considering m[i][j] means the distance from T[i] to S[j], and add the empty "" case, then,
//
// A) Initialization for empty case: m[0][j] = 1;
//
// B) Calculation
//
// a) Target-len > Source-len cannot found any substring
// i > j : m[i][j] = 0;
//
// b) if not equal, take the value of T[i] => S[j-1] (e.g. ["ra" => "rabb"] =["ra" => "rab"] )
// S[j] != T[i] : m[i][j] = m[i][j-1]
//
// c) if equal. (e.g. ["rab" => "rabb"] = ["rab" =>"rab"] + ["ra" => "rab"] )
// S[j] == T[i] : m[i][j] = m[i][j-1] + m[i-1][j-1]
//
// 1) Initialize a table as below
// "" r a b b b i t
// "" 1 1 1 1 1 1 1 1
// r
// b
// t
//
// 2) Calculation
// "" r a b b b i t
// "" 1 1 1 1 1 1 1 1
// r 0 1 1 1 1 1 1 1
// b 0 0 0 1 2 3 3 3
// t 0 0 0 0 0 0 0 3
//
int numDistinct1(string S, string T) {
vector< vector<int> > m(T.size()+1, vector<int>(S.size()+1));
for (int i=0; i<m.size(); i++){
for (int j=0; j<m[i].size(); j++){
if (i==0){
m[i][j] = 1;
continue;
}
if ( i>j ) {
m[i][j] = 0;
continue;
}
if (S[j-1] == T[i-1]){
m[i][j] = m[i][j-1] + m[i-1][j-1];
} else {
m[i][j] = m[i][j-1] ;
}
}
}
return m[T.size()][S.size()];
}
//=====================
// Dynamic Programming
//=====================
//
// The idea here is an optimization of above idea
// (It might be difficult to understand if you don't know the above idea)
//
// For example:
//
// S = "abbbc" T="abb"
// posMap = { [a]={0}, [b]={1,2} }
// numOfSubSeq = {1, 0, 0, 0 }
//
// S[0] is 'a', pos is 0, numOfSubSeq = {1, 0+1, 0, 0};
//
// S[1] is 'b', pos is 2, numOfSubSeq = {1, 1, 0, 0+0};
// pos is 1, numOfSubSeq = {1, 1, 0+1, 0};
//
// S[2] is 'b', pos is 2, numOfSubSeq = {1, 1, 1, 0+1};
// pos is 1, numOfSubSeq = {1, 1, 1+1, 1};
//
// S[3] is 'b', pos is 2, numOfSubSeq = {1, 1, 2, 2+1};
// pos is 1, numOfSubSeq = {1, 1, 1+2, 3};
//
// S[4] is 'c', not found, numOfSubSeq = {1, 1, 3, 3};
//
//
int numDistinct2(string S, string T) {
map< char, vector<int> > pos_map;
int len = T.size();
vector<int> numOfSubSeq(len+1);
numOfSubSeq[0] = 1;
for (int i=len-1; i>=0; i--){
pos_map[T[i]].push_back(i);
}
for (int i=0; i<S.size(); i++){
char ch = S[i];
if ( pos_map.find(ch) != pos_map.end() ) {
for (int j=0; j<pos_map[ch].size(); j++) {
int pos = pos_map[ch][j];
numOfSubSeq[pos+1] += numOfSubSeq[pos];
}
}
}
return numOfSubSeq[len];
}
//random invoker
int numDistinct(string S, string T) {
srand(time(0));
if (rand()%2){
cout << "-----Dynamic Programming Method One-----" << endl;
return numDistinct1(S,T);
}
cout << "-----Dynamic Programming Method Two-----" << endl;
return numDistinct2(S,T);
}
int main(int argc, char** argv)
{
string s = "rabbbit";
string t = "rabbit";
if (argc>2){
s = argv[1];
t = argv[2];
}
cout << "S=\"" << s << "\" T=\"" << t << "\"" << endl;
cout << "numDistinct = " << numDistinct(s, t) << endl;
return 0;
}