-
Notifications
You must be signed in to change notification settings - Fork 8
/
utils.py
229 lines (195 loc) · 8.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from keras.utils import np_utils
import numpy as np
from keras.preprocessing import image
from concurrent.futures import ProcessPoolExecutor
from functools import partial
from config import *
from math import ceil
import json
from keras.callbacks import ModelCheckpoint
from sklearn import metrics
from collections import Counter
from keras import backend as K
from keras.layers import *
from keras.models import Model
#------------------------------------------------------------------------------
# Getting the L1 Distance between the 2 encodings
L1_layer = Lambda(lambda tensor:K.abs(tensor[0] - tensor[1]))
#------------------------------------------------------------------------------
def small_vgg(input_shape):
input1 = Input(input_shape)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(input1)
# Block 1
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 3
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
x = Flatten()(x)
x = Dense(512)(x)
return Model(input1,x)
#------------------------------------------------------------------------------
def calculate_metrics(ytrue1, ypred1):
conf = metrics.confusion_matrix(ytrue1, ypred1, [0,1])
maxres = (conf[1,1],
conf[0,0],
conf[0,1],
conf[1,0],
metrics.precision_score(ytrue1, ypred1) * 100,
metrics.recall_score(ytrue1, ypred1) * 100,
metrics.f1_score(ytrue1, ypred1) * 100,
metrics.accuracy_score(ytrue1, ypred1) * 100)
return maxres
#------------------------------------------------------------------------------
def test_report(model_name, model, num_test_steps, test_gen):
print("=== Evaluating model: {:s} ===".format(model_name))
a = open("%s_inferences_output.txt" % (model_name), "w")
ytrue, ypred = [], []
for i in range(num_test_steps):
X, Y, paths = next(test_gen)
Y_ = model.predict(X)
for y1, y2, p0, p1 in zip(Y_.tolist(), Y.argmax(axis=-1).tolist(), paths[0], paths[1]):
y1_class = np.argmax(y1)
ypred.append(y1_class)
ytrue.append(y2)
a.write("%s;%s;%d;%d;%s\n" % (p0, p1, y2, y1_class, str(y1)))
a.write('tp: %d, tn: %d, fp: %d, fn: %d P:%0.2f R:%0.2f F:%0.2f A:%0.2f' % calculate_metrics(ytrue, ypred))
a.close()
#------------------------------------------------------------------------------
def load_img(img, type, vec_size, vec_size2):
if type != 'two_stream':
if type=='plate':
iplt0 = image.load_img(img[0], target_size=vec_size)
iplt1 = image.load_img(img[2], target_size=vec_size)
else:
iplt0 = image.load_img(img[1], target_size=vec_size)
iplt1 = image.load_img(img[3], target_size=vec_size)
iplt0 = image.img_to_array(iplt0)
iplt0 = iplt0/255.0
iplt1 = image.img_to_array(iplt1)
iplt1 = iplt1/255.0
d1 = {"i0":iplt0, "i1":iplt1, "l":img[4], "p1":img[0], "p2":img[2]}
else:
iplt0 = image.load_img(img[0], target_size=vec_size)
iplt1 = image.load_img(img[2], target_size=vec_size)
iplt2 = image.load_img(img[1], target_size=vec_size2)
iplt3 = image.load_img(img[3], target_size=vec_size2)
iplt0 = image.img_to_array(iplt0)
iplt0 = iplt0/255.0
iplt1 = image.img_to_array(iplt1)
iplt1 = iplt1/255.0
iplt2 = image.img_to_array(iplt2)
iplt2 = iplt2/255.0
iplt3 = image.img_to_array(iplt3)
iplt3 = iplt3/255.0
d1 = {"i0":iplt0,"i1":iplt1,"i2":iplt2,"i3":iplt3,"l":img[4], "p1":img[0], "p2":img[2]}
return d1
#------------------------------------------------------------------------------
def get_batch_inds(batch_size, idx, N):
"""
Generates an array of indices of length N
:param batch_size: the size of training batches
:param idx: data to split into batches
:param N: Maximum size
:return batchInds: list of arrays of data of length batch_size
"""
batchInds = []
idx0 = 0
toProcess = True
while toProcess:
idx1 = idx0 + batch_size
if idx1 >= N:
idx1 = N
toProcess = False
batchInds.append(idx[idx0:idx1])
idx0 = idx1
return batchInds
#------------------------------------------------------------------------------
def generator(features, batch_size, type, executor, vec_size, vec_size2=None, with_paths=False):
N = len(features)
indices = np.arange(N)
batchInds = get_batch_inds(batch_size, indices, N)
while True:
for inds in batchInds:
futures = []
_vec_size = (len(inds),) + vec_size
b1 = np.zeros(_vec_size)
b2 = np.zeros(_vec_size)
if vec_size2 is not None:
_vec_size2 = (len(inds),) + vec_size2
b3 = np.zeros(_vec_size2)
b4 = np.zeros(_vec_size2)
blabels = np.zeros((len(inds)))
p1 = []
p2 = []
futures = [executor.submit(partial(load_img, features[index], type, vec_size, vec_size2)) for index in inds]
results = [future.result() for future in futures]
for i,r in enumerate(results):
b1[i,:,:,:] = r['i0']
b2[i,:,:,:] = r['i1']
blabels[i] = r['l']
p1.append(r['p1'])
p2.append(r['p2'])
if type == 'two_stream':
b3[i,:,:,:] = r['i2']
b4[i,:,:,:] = r['i3']
blabels = np_utils.to_categorical(blabels, 2)
if with_paths:
if type == 'two_stream':
yield [b1, b2, b3, b4], blabels, [p1, p2]
else:
yield [b1, b2], blabels, [p1, p2]
else:
if type == 'two_stream':
yield [b1, b2, b3, b4], blabels
else:
yield [b1, b2], blabels
#------------------------------------------------------------------------------
def run(siamese_net, type):
data = json.load(open('dataset%d_%d.json' % (amount, multiplyNegatives)))
trn = data['trn']
tst = data['tst']
np.random.shuffle(trn)
input1 = (image_size_h_p,image_size_w_p,nchannels)
input2 = (image_size_h_c,image_size_w_c,nchannels)
train_steps_per_epoch = ceil(len(trn) / batch_size)
val_steps_per_epoch = ceil(len(tst) / batch_size)
ex1 = ProcessPoolExecutor(max_workers = 4)
ex2 = ProcessPoolExecutor(max_workers = 4)
ex3 = ProcessPoolExecutor(max_workers = 4)
if type is None:
trnGen = generator(trn, batch_size, type, ex1, input1, input2)
tstGen = generator(tst, batch_size, type, ex2, input1, input2)
tstGen2 = generator(tst, batch_size, type, ex3, input1, input2,True)
elif type == 'plate':
trnGen = generator(trn, batch_size, type, ex1, input1)
tstGen = generator(tst, batch_size, type, ex2, input1)
tstGen2 = generator(tst, batch_size, type, ex3, input1,None,True)
else:
trnGen = generator(trn, batch_size, type, ex1, input2)
tstGen = generator(tst, batch_size, type, ex2, input2)
tstGen2 = generator(tst, batch_size, type, ex3, input2,None,True)
name = "two_stream" if type is None else type
f1 = 'siamese_vehicle_%s.h5' % (name)
c1 = ModelCheckpoint(filepath=f1,
monitor='val_loss',
verbose=0,
save_best_only=True,
save_weights_only=False,
mode='auto',
period=1)
#fit model
history = siamese_net.fit_generator(trnGen,
steps_per_epoch=train_steps_per_epoch,
epochs=NUM_EPOCHS,
validation_data=tstGen,
validation_steps=val_steps_per_epoch,
callbacks = [c1])
#validate plate model
test_report("validation_siamese_vehicle_%s" % (name),siamese_net, val_steps_per_epoch, tstGen2)