-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTask52_Global_Sensitivity_Analysis.R
224 lines (190 loc) · 10.6 KB
/
Task52_Global_Sensitivity_Analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Setup and Read Data
source("ams_initialize_script.R")
source("SCIM_calculation.R")
source("ivsc_2cmt_RR_V1.R")
library(RxODE)
model = ivsc_2cmt_RR_KdT0L0()
dirs$rscript_name = "Task52_Global_Sensitivity_Analysis.R"
dirs$filename_prefix= str_extract(dirs$rscript_name,"^Task\\d\\d\\w?_")
#data_in = read.csv("results/Task19_2019-11-17_20e3.csv",stringsAsFactors = FALSE)
data_in = read.csv("results/Task22_2020-10-17_40e3.csv",stringsAsFactors = FALSE)
# Compute various quantities for comparing AFIR and SCIM, theory and simulation
### Using adhoc theory calculation for SCIM
#put data into categories ----
data = data_in
#check the assumptions of the data ----
K = 2
data = data %>%
mutate(AFIR_SCIM_differr = abs((AFIR_thy - SCIM_sim)),
SCIM_SCIM_differr = abs((SCIM_Lfold_adhoc_thy - SCIM_sim)),
SCIM_SCIM_ratioerr = abs((SCIM_Lfold_adhoc_thy - SCIM_sim))/SCIM_sim) %>%
mutate(assumption_AFIR_lt_30 = AFIR_thy < 0.30,
assumption_SCIM_lt_30 = SCIM_Lfold_adhoc_thy < 0.30,
str_SCIM_lt_30 = ifelse(assumption_SCIM_lt_30,"o SCIM < 30%","x SCIM >= 30%"),
assumption_drug_gg_LssKssDT_KssTL = Dss_thy > K*Kss_DT*Lss_thy/Kss_TL,
str_drug_gg_LssKssDT_KssTL = ifelse(assumption_drug_gg_LssKssDT_KssTL, "o D > 2*Lss*KssDT/KssTL","x D < 2*Lss*KssDT/KssTL"),
assumption_drug_gg_Ttot = Dss_thy > 2*Ttotss_thy,
str_drug_gg_Ttot = ifelse(assumption_drug_gg_Ttot,"o D > 2*Ttot","x D < 2*Ttot"),
assumption_drug_gg_Ccrit = Dss_thy > 2*Ccrit_thy,
str_drug_gg_Ccrit = ifelse(assumption_drug_gg_Ccrit,"o D > 2*Ccrit","x D < 2*Ccrit"),
assumption_ODE_tolerance = Dss_thy/TLss_thy < 1e12,
assumption_L_noaccum = Lfold_thy <= 1.1, #then SCIM = AFIR
assumption_all_AFIR = assumption_AFIR_lt_30 &
assumption_drug_gg_Ttot &
assumption_drug_gg_Ccrit &
assumption_drug_gg_LssKssDT_KssTL &
assumption_ODE_tolerance &
assumption_L_noaccum,
assumption_all_SCIM = assumption_SCIM_lt_30 &
assumption_drug_gg_Ttot &
assumption_drug_gg_Ccrit &
assumption_drug_gg_LssKssDT_KssTL &
assumption_ODE_tolerance) %>%
mutate(assumption_SCIM_list = paste(assumption_SCIM_lt_30,
assumption_drug_gg_Ttot,
assumption_drug_gg_Ccrit,
assumption_drug_gg_LssKssDT_KssTL),
assumption_SCIM_str = paste(ifelse(assumption_SCIM_lt_30, "SCIM<30%; ", "-"),
ifelse(assumption_drug_gg_Ttot, "D>2*Ttot; ", "-"),
ifelse(assumption_drug_gg_Ccrit, "D>2*Ccrit; ", "-"),
ifelse(assumption_drug_gg_LssKssDT_KssTL, "D>Lss*KssDT/KssTL ", "-"),
sep = "\n")) %>%
arrange(assumption_SCIM_list) %>%
mutate(assumption_SCIM_str = factor(assumption_SCIM_str, levels = unique(assumption_SCIM_str)))
# histogram of AFIR_theory and SCIM_sim error ----
data1 = data %>%
select(differr = AFIR_SCIM_differr, assumptions_all_true = assumption_all_AFIR, infusion) %>%
mutate(metric = "AFIR")
data2 = data %>%
select(differr = SCIM_SCIM_differr, assumptions_all_true = assumption_all_SCIM, infusion) %>%
mutate(metric = "ASIR")
data_plot = bind_rows(data1,data2) %>%
mutate(assumptions_all_true = ifelse(assumptions_all_true,"yes","no"),
infusion = ifelse(infusion==1,"continual infusion","every 2-4 week dosing"))
g = ggplot(data_plot, aes(differr*100, fill = assumptions_all_true))
g = g + geom_histogram()
g = g + facet_grid(infusion~metric, scales = "free_x", switch = "y")
breaks = 10^seq(-3,2,by=1)
g = g + xgx_scale_x_log10(limits = c(2e-4,200), breaks = breaks, labels = paste0(breaks,"%"))
g = g + labs(x = "Difference between\ntheoretical metric (AFIR or ASIR)\nand ASIR simulation",
y = "Number of Simulations",
fill = "Assumptions\nfor metric\nare all true")
g = g + scale_fill_manual(values = c(yes="black",no="grey80"))
g = g + geom_vline(xintercept = 10, color = "grey30")
print(g)
ggsave(width = 8, height= 4, filename = "./figures/Task52_GlobalSensitivityAnalysis.png")
# diff-err SSIM - histogram - grid 4x4 ----
g = ggplot(filter(data, infusion == 1), aes(100*SCIM_SCIM_differr))
#g = g + facet_wrap(~str_drug_gg_Ccrit)
g = g + facet_grid(str_drug_gg_Ccrit + str_SCIM_lt_30 ~ str_drug_gg_Ttot + str_drug_gg_LssKssDT_KssTL, scales = "free_y", switch ="y")
#g = g + geom_histogram(aes(y=..density..))
g = g + geom_histogram()
breaks = 10^seq(-3,2,by=1)
g = g + xgx_scale_x_log10(limits = c(2e-4,200), breaks = breaks, labels = paste0(breaks,"%"))
g = g + labs(x = "Difference between\ntheoretical metric (AFIR or ASIR)\nand ASIR simulation",
y = "Number of Simulations",
fill = "Assumptions \nthat are true")
g = g + geom_vline(xintercept = 10, color = "grey30")
#colors = scales::seq_gradient_pal("blue", "red", "Lab")(seq(0,1,length.out=length(unique(data$assumption_SCIM_str))))
#g = g + scale_fill_manual(values = colors)
print(g)
ggsave(width = 8, height= 4, filename = "./figures/Task52_GlobalSensitivityAnalysis_SSIM_Assum_differr.png")
# diff-err SSIM - histogram - Ccrit ----
g = ggplot(filter(data, infusion == 1), aes(100*SCIM_SCIM_differr))
g = g + facet_wrap(~str_drug_gg_Ccrit)
#g = g + facet_grid(str_drug_gg_Ccrit + str_SCIM_lt_30 ~ str_drug_gg_Ttot + str_drug_gg_LssKssDT_KssTL, scales = "free_y", switch =)
#g = g + geom_histogram(aes(y=..density..))
g = g + geom_histogram()
breaks = 10^seq(-3,2,by=1)
g = g + xgx_scale_x_log10(limits = c(2e-4,200), breaks = breaks, labels = paste0(breaks,"%"))
g = g + labs(x = "Difference between\ntheoretical metric (AFIR or ASIR)\nand ASIR simulation",
y = "Number of Simulations",
fill = "Assumptions \nthat are true")
g = g + geom_vline(xintercept = 10, color = "grey30")
#colors = scales::seq_gradient_pal("blue", "red", "Lab")(seq(0,1,length.out=length(unique(data$assumption_SCIM_str))))
#g = g + scale_fill_manual(values = colors)
print(g)
ggsave(width = 8, height= 4, filename = "./figures/Task52_GlobalSensitivityAnalysis_SSIM_Ccrit_differr.png")
# ratio-err SSIM - histogram - Ccrit ----
g = g + facet_grid()
g = ggplot(filter(data, infusion == 1), aes(100*SCIM_SCIM_ratioerr))
g = g + facet_wrap(~str_drug_gg_Ccrit)
#g = g + facet_grid(str_drug_gg_Ccrit + str_SCIM_lt_30 ~ str_drug_gg_Ttot + str_drug_gg_LssKssDT_KssTL, scales = "free_y", switch =)
#g = g + geom_histogram(aes(y=..density..))
g = g + geom_histogram()
breaks = 10^seq(-3,2,by=1)
g = g + xgx_scale_x_log10(limits = c(2e-4,200), breaks = breaks, labels = paste0(breaks,"%"))
g = g + labs(x = "Ratio difference between \ntheoretical ASIR and simulation",
y = "Number of Simulations",
fill = "Assumptions \nthat are true")
g = g + geom_vline(xintercept = 10, color = "grey30")
#colors = scales::seq_gradient_pal("blue", "red", "Lab")(seq(0,1,length.out=length(unique(data$assumption_SCIM_str))))
#g = g + scale_fill_manual(values = colors)
print(g)
ggsave(width = 8, height= 4, filename = "./figures/Task52_GlobalSensitivityAnalysis_SSIM_Ccrit_Ratioerr.png")
# ratio-err SSIM - histogram - grid 4x4 ----
g = g + facet_grid()
g = ggplot(filter(data, infusion == 1), aes(100*SCIM_SCIM_ratioerr))
#g = g + facet_wrap(~str_drug_gg_Ccrit)
g = g + facet_grid(str_drug_gg_Ccrit + str_SCIM_lt_30 ~ str_drug_gg_Ttot + str_drug_gg_LssKssDT_KssTL, scales = "free_y", switch =)
#g = g + geom_histogram(aes(y=..density..))
g = g + geom_histogram()
breaks = 10^seq(-3,2,by=1)
g = g + xgx_scale_x_log10(limits = c(2e-4,200), breaks = breaks, labels = paste0(breaks,"%"))
g = g + labs(x = "Ratio difference between \ntheoretical ASIR and simulation",
y = "Number of Simulations",
fill = "Assumptions \nthat are true")
g = g + geom_vline(xintercept = 10, color = "grey30")
#colors = scales::seq_gradient_pal("blue", "red", "Lab")(seq(0,1,length.out=length(unique(data$assumption_SCIM_str))))
#g = g + scale_fill_manual(values = colors)
print(g)
ggsave(width = 8, height= 4, filename = "./figures/Task52_GlobalSensitivityAnalysis_SSIM_4assum_Ratioerr.png")
# ratio-err - Parallel Coordinates - all assumptions met ----
param2uniform = function(x) {(log(x) - log(min(x)))/(log(max(x))-log(min(x)))}
data_plot = data %>%
mutate(kratio = (koff_DT+keDT)/(koff_TL+keTL)) %>%
mutate_at(vars(AFIR:keDT,dose_mpk,kratio), funs(tf=param2uniform(.))) %>%
select(id, infusion, is_soluble, contains("AFIR"),contains("SCIM"), T0_tf:keDT_tf, dose_mpk_tf, kratio_tf, contains("assumption")) %>%
gather(param,param_value,-c(id, infusion, is_soluble, keT_keDT_ratio_tf, kratio_tf, contains("AFIR"), contains("SCIM"), contains("assumption"))) %>%
mutate(param = str_replace(param,"_tf","")) %>%
mutate(ratioerr_lt_10pct = ifelse(SCIM_SCIM_ratioerr < 0.1, "yes","no"))
#sort by average param value in one category to help with visualization
data_summ = data_plot %>%
group_by(param) %>%
filter(assumption_all_SCIM == TRUE) %>%
summarise(x = mean(param_value)) %>%
arrange(x) %>%
ungroup()
kable(data_summ)
data_plot = data_plot %>%
mutate(param = factor(param, levels = data_summ$param))
g = ggplot(data_plot, aes(x=param,y=param_value, group = id, color = ratioerr_lt_10pct, alpha = ratioerr_lt_10pct))
g = g + geom_line()
g = g + facet_grid(infusion~is_soluble)
g = g + theme(axis.text.x = element_text(angle = 45, hjust = 1))
g = g + labs(x = "Parameter", y = "Parameter Value")
g = g + guides(colour = guide_legend(override.aes = list(alpha = 1)))
g = g + scale_color_manual(values = c(yes = "blue", no = "red"))
g = g + scale_alpha_manual(values = c(yes = .01, no = 0.01))
#g = xgx_save(7,7,dirs,"Parallel_Coord","")
print(g)
# look at dots ----
g = ggplot(data, aes(x = T0, y = SCIM_SCIM_ratioerr))
g = g + geom_point(alpha = 0.1)
g = g + xgx_scale_x_log10()
g = g + facet_grid(infusion~is_soluble)
print(g)
stop()
#explore individual patients ----
x = data %>%
filter(assumption_all_SCIM == TRUE) %>%
arrange(desc(SCIM_SCIM_ratioerr)) %>%
mutate(koff_DT = Kd_DT*kon_DT, koff_TL = Kd_TL*kon_TL)
xsub = x %>%
select(SCIM_SCIM_ratioerr, SCIM_SCIM_differr, Kss_TL, Kss_DT, koff_TL, koff_DT) %>%
mutate(koff_ratio = koff_DT/koff_TL)
i=1
xi = x[i,]
summi = plot_param(xi,model,infusion = xi$infusion)
print(summi$param %>% select(Kd_DT, Kd_TL, kon_TL, kon_DT))
print(summi$compare)