-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTask22_LatinHypercube_Soluble_and_Membrane_AddCL_AddDoseReg.R
228 lines (189 loc) · 7.75 KB
/
Task22_LatinHypercube_Soluble_and_Membrane_AddCL_AddDoseReg.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
source("ams_initialize_script.R")
source("SCIM_calculation.R")
source("ivsc_2cmt_RR_V1.R")
dirs$rscript_name = "Task22_LatinHypercube_Soluble_and_Membrane_AddCL_AddDoseReg.R"
dirs$filename_prefix= str_extract(dirs$rscript_name,"^Task\\d\\d\\w?_")
library(lhs)
n_samples_simulate = 1e4 #number of parameters to simulate for each target type
n_samples_start = n_samples_simulate*10 #number of parameters to start with. Will select only those at reasonable doses.
tmax = 7*52*2 #days (for soluble target, 16 weeks should be long enough)
compartment = 2
model = ivsc_2cmt_RR_KdT0L0()
#read in parameter ranges to explore
param_minmax_in = readxl::read_excel("parameters/Task22_Param_Ranges_AFIR_Tfold.xlsx")
#soluble parameter ranges ----
param_minmax = param_minmax_in %>%
as.data.frame() %>%
select(Parameter, min = min_sol,max = max_sol, Units, type_sol) %>%
mutate(fixed = as.numeric(type_sol)) %>%
filter(!is.na(fixed))
rownames(param_minmax) = param_minmax$Parameter
n_param = nrow(param_minmax)
x = lhs::randomLHS(n_samples_start,n_param)
log_min = matrix(rep(log(param_minmax$min), each = n_samples_start), nrow = n_samples_start, ncol = n_param)
log_max = matrix(rep(log(param_minmax$max), each = n_samples_start), nrow = n_samples_start, ncol = n_param)
param = exp(log_min + (log_max - log_min)*x)
param[is.na(param)] = 0
colnames(param) = param_minmax$Parameter
param_soluble = as.data.frame(param) %>%
mutate(keTL = keL/keL_keTL_ratio,
Kss_DT = Kd_DT + keDT/kon_DT,
Kss_TL = Kd_TL + keTL/kon_TL,
TL0 = T0*L0/Kss_TL,
ksynT = T0*keT + keTL*TL0,
Ttotss = ksynT/keDT,
Tfold = Ttotss/T0,
dose_nmol = Kss_DT*Tfold*CL*tau/AFIR, #choose dose to get AFIR_simple in range
dose_mpk = dose_nmol*scale.nmol2mpk,
keTL = keL/keL_keTL_ratio,
tmax = tmax,
is_soluble= 1)
cat("instances of zero values for soluble target\n")
print(summarise_all(param_soluble,funs(sum(.==0))))
#membrane-bound parameter ranges ----
param_minmax = param_minmax_in %>%
as.data.frame() %>%
select(Parameter, min = min_mem,max = max_mem, Units, type_mem) %>%
mutate(fixed = as.numeric(type_mem)) %>%
filter(!is.na(fixed))
rownames(param_minmax) = param_minmax$Parameter
n_param = nrow(param_minmax)
x = lhs::randomLHS(n_samples_start,n_param)
log_min = matrix(rep(log(param_minmax$min), each = n_samples_start), nrow = n_samples_start, ncol = n_param)
log_max = matrix(rep(log(param_minmax$max), each = n_samples_start), nrow = n_samples_start, ncol = n_param)
param = exp(log_min + (log_max - log_min)*x)
param[is.na(param)] = 0
colnames(param) = param_minmax$Parameter
param_membrane = as.data.frame(param) %>%
mutate(keTL = keL/keL_keTL_ratio,
keDT = keT/keT_keDT_ratio,
Kss_DT = Kd_DT + keDT/kon_DT,
Kss_TL = Kd_TL + keTL/kon_TL,
TL0 = T0*L0/Kss_TL,
ksynT = T0*keT + keTL*TL0,
Ttotss = ksynT/keDT,
Tfold = Ttotss/T0,
dose_nmol = Kss_DT*Tfold*CL*tau/AFIR, #choose dose to get AFIR_simple in range
dose_mpk = dose_nmol*scale.nmol2mpk,
keTL = keL/keL_keTL_ratio,
tmax = tmax,
is_soluble= 0)
cat("instances of zero values for membrane-bound target\n")
print(summarise_all(param_membrane,funs(sum(.==0))))
param_soluble_reduce = param_soluble %>%
filter(dose_mpk<=100) %>%
slice(1:n_samples_simulate)
param_membrane_reduce = param_membrane %>%
filter(dose_mpk<=100) %>%
slice(1:n_samples_simulate)
param_reduce = bind_rows(param_membrane_reduce, param_soluble_reduce)
param_all = bind_rows(param_membrane, param_soluble)
# look at the dosing ----
g = ggplot(data = param_all, aes(dose_mpk, fill = as.character(is_soluble)))
g = g + geom_histogram()
g = g + xgx_scale_x_log10(breaks = 10^seq(-20,20,by=2))
g = g + geom_vline(aes(xintercept=100),color="black")
g = g + ggtitle(paste0("all parameters, N = (", nrow(param), " )"))
g = g + theme(legend.position = "top")
g1 = g
# create two sets of simulations
# one that will be an infusion and one that will be dosed every 2-4 weeks
param_infusion = param_reduce %>%
mutate(infusion = TRUE,
tau = 21)
param_bolus = param_reduce %>%
mutate(infusion = FALSE,
tau = sample(7*c(2,3,4), nrow(param_reduce), replace = TRUE))
param = bind_rows(param_bolus, param_infusion) %>%
mutate(keD = CL/V1,
k12 = Q/V1,
k21 = Q/V2)
g = ggplot(data = param_reduce,aes(AFIR, fill = as.character(is_soluble)))
g = g + geom_histogram()
g = g + geom_vline(xintercept=c(0.05,0.30),color="black")
g = g + xgx_scale_x_log10(breaks = 10^seq(-20,20,by=2))
g = g + ggtitle(paste0("reduced set, N = (", nrow(param_reduce), " )"))
g = g + theme(legend.position = "top")
g2 = g
gg = gridExtra::arrangeGrob(g1,g2,nrow = 1, ncol = 2)
gridExtra::grid.arrange(gg)
# Run the simulations ----
start_time = Sys.time()
result = list()
#loop through each simulation
n_samples = nrow(param)
for (i in 39435) { #1:n_samples
if ((i %% 100) == 1) {
cat(paste("run ",i-1," of ", n_samples, "-" , Sys.time(), "\n"))
}
param.as.double = param[i,] %>%
as.numeric()
names(param.as.double) = names(param)
dose.nmol = as.numeric(param.as.double["dose_mpk"])*scale_mpk2nmol
tau = param.as.double["tau"]
thy = lumped.parameters.theory ( param.as.double, dose.nmol, param$tau[i], infusion = param$infusion[i])
sim = lumped.parameters.simulation(model, param.as.double, dose.nmol, tmax, param$tau[i], compartment, infusion = param$infusion[i])
stop()
#identify runs with issues
if (!is.na(sim$SCIM_sim)) {
if (sim$TLss_sim < 0 || sim$SCIM_sim < 0) {
print(paste("there is an issue with run",i))
}
}
#all parameter values for the output table
par_in = param.as.double %>%
t() %>%
as.data.frame()
name_in = names(par_in)
#include parameters used in the ODE, but not in the input parameter vector
par_ode = param.as.double %>%
model$repar() %>%
t() %>%
as.data.frame()
name_ode = names(par_ode)
par_ode = par_ode[,setdiff(name_ode,name_in)]
#create result table
result[[i]] = bind_cols(sim,thy,par_in,par_ode) %>%
mutate(id = i,
tmax = tmax) %>%
select(id,everything())
if (((i %% 1e4) == 0) || (i==n_samples)) {
filename = paste0("results/",dirs$filename_prefix,Sys.Date(),"_",i/1e3,"e3.csv")
results_save = result %>%
bind_rows()
#want to reduce the number of sig digs to save a bit of space,
#but need to keep them for the id
#id_all_sig_digs = results_save$id
#results_save = results_save %>%
# signif(digits = 6) %>%
# mutate(id = id_all_sig_digs)
write.csv(results_save,filename,quote = FALSE, row.names = FALSE)
}
#plot a simulation after every n_sim simulations
n_sim = 200
if ( ((i %% n_sim)==1) & (result[[i]]$error_simulation == FALSE) ) {
out = plot_param(result[[i]],model, plot_flag = FALSE, infusion = param$infusion[i])
subtitle = ifelse(result[[i]]$is_soluble==1,"soluble","membrane-bound")
g = out$plot + labs(subtitle = subtitle)
print(g)
}
#if (i==67)
# browser()
}
stop_time = Sys.time()
cat("Total time: total_duration\n")
total_duration = (stop_time-start_time)
print(total_duration)
duration_per_run_sec = total_duration/n_samples
cat("Time per run:")
cat(paste0(signif(as.numeric(total_duration/n_samples, units = "secs"),2), " sec\n"))
#check the initial condition and steady state ----
check = results_save %>%
select(TLss_frac_change, TL0_05tau_frac_change) %>%
gather() %>%
mutate(value = abs(value))
g = ggplot(check,aes(value))
g = g + geom_histogram()
g = g + facet_wrap(~key, switch = "y", scales = "free_x")
g = g + xgx_scale_x_log10()
print(g)