-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTask02c_Sensitivity_SCIM_k_pars_all_drugs_infusion.R
196 lines (165 loc) · 7.17 KB
/
Task02c_Sensitivity_SCIM_k_pars_all_drugs_infusion.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
source("ams_initialize_script.R")
#rxSetIni0(FALSE)
source("SCIM_calculation.R")
source("ivsc_2cmt_RR_V1.R")
dirs$Rscript.name = "Task02a_Sensitivity_SCIM_k_pars.R"
dirs$output.prefix= str_extract(dirs$Rscript.name,"^Task\\d\\d\\w?_")
model = ivsc_2cmt_RR_v1()
#Drug list to loop through for finding file names
drugs_list = list("Pembro","VEGFR1","VEGFR2","Atezoli","Ramuc","Siltux","Tociliz") #ADD THIS LINE
dfs = data.frame() #ADD THIS LINE
# Create paths to data files for each drug.
param = NULL #ADD THIS LINE
i = 1 #ADD THIS LINE
#Get params for all the drugs
for (drugs in drugs_list) { #ADD THIS LOOP
filename = list.files(path = "parameters/",pattern = drugs) #change filename line to this
if (length(filename)>1)
stop("check and see if you have any temp files open or something. maybe close excel")
param[[i]] = paste0("parameters/",filename)
i = i+1
}
# List of parameters of interest.
parameters = c("ksynT", "keDT","koff_TL", "kon_TL", "koff_DT","kon_DT")
# Dose time, frequency, compartment, nominal dose
tmax = 52*7 #days
tau = 21 #days
compartment = 2
dose.nmol = 100*scale.mpk2nmol
param.list = list()
all_params <- data.frame() #ADD THIS LINE
for (i in 1:length(drugs_list)){ #loop over all the drugs in the list
# Load parameters.
param.as.double = read.param.file(param[i]) #ADD THIS LINE (CHANGED VARIABLE NAME TO PARAM)
df_param = as.data.frame(t(param.as.double))
param.list[[i]] = data.frame(t(param.as.double)) %>%
mutate(drug = drugs_list[[i]]) %>%
dplyr::select(drug,everything())
# Set range for parameters of interest in SA.
# Check which parameters are nonzero, not including dose which isn't in df_param.
nnzero = df_param[parameters[which(parameters != "dose")]] != 0
nnzero = colnames(nnzero)[which(nnzero)]
params.to.iterate = data.frame(lapply(df_param[nnzero], function(x) lseq(x*0.000001, x*1000000, 13)))
dfs = list() #Reset the temp list for every drug
temp_dfs <- data.frame() #Reset the temporary dataframe
# Iterate all of the parameters for a single drug.
for (j in 1:ncol(params.to.iterate)){
dfs[[j]] = compare.thy.sim(model = model,
param.as.double = param.as.double,
dose.nmol = dose.nmol,
tmax = tmax,
tau = tau,
compartment = compartment,
param.to.change = names(params.to.iterate)[j],
param.to.change.range = params.to.iterate[[j]],
infusion = TRUE)
}
#ADD THESE LINES
temp_dfs <- bind_rows(dfs) #create a temp dataframe for all the data
temp_dfs$drug <- as.character(drugs_list[i])
all_params <- rbind(all_params,temp_dfs) #Cat data frame
}
param.table = bind_rows(param.list) %>%
mutate(Kd_DT = koff_DT/kon_DT,
Kss_DT = (koff_DT + keDT)/kon_DT,
Kd_TL = koff_TL/kon_TL,
Kss_TL = (koff_TL + keTL)/kon_TL)
#View(param.table)
drug = param.table$drug
param.tablet = param.table %>%
dplyr::select(-drug) %>%
t() %>%
as.data.frame() %>%
setNames(drug)
#View(param.tablet)
data.plot = all_params %>%
dplyr::select(fold.change.param, SCIM_sim, SCIM_thy_keTL_negroot, SCIM_thy_keTL0, AFIR_thy, drug,param) %>%
gather(key,value,-c(fold.change.param,drug,param))
g <- ggplot(data.plot, aes(x=fold.change.param,y=value,color=key,linetype=key)) +
geom_line(size = 1, alpha = .5) +
facet_grid(drug ~ param,scales = "free_y", switch = "y") +
scale_x_log10() +
scale_y_log10() +
scale_color_manual(values = c(SCIM_sim = "black",
SCIM_thy_keTL0 = "blue",
SCIM_thy_keTL_negroot = "green",
AFIR_thy = "red")) +
scale_linetype_manual(values = c(SCIM_sim = "solid",
SCIM_thy_keTL0 = "dotted",
SCIM_thy_keTL_negroot = "dashed",
AFIR_thy = "solid"))
print(g)
# Compare simplified SCIM eqns.
# SCIM_thy_keTL_negroot is the most complex i.e not simplified version of SCIM
# SCIM_sim is the SCIM from the simulation
# 26, 29, and 31 refer to the eqn numbers in the latex doc. for the simplified SCIMs
data.SCIMs = all_params %>%
dplyr::select(fold.change.param, SCIM_sim, SCIM_thy_keTL_negroot, SCIM_thy_keTL_negroot26, SCIM_thy_keTL_negroot31, drug,param) %>%
gather(key,value,-c(fold.change.param,drug,param))
g <- ggplot(data.SCIMs, aes(x=fold.change.param,y=value,color=key,linetype=key)) +
geom_line(size = 1, alpha = .6) +
facet_grid(drug ~ param,scales = "free_y", switch = "y") +
scale_x_log10() +
scale_y_log10() +
scale_color_manual(values = c(SCIM_sim = "gray25",
SCIM_thy_keTL_negroot = "green3",
SCIM_thy_keTL_negroot26 = "dodgerblue4",
#SCIM_thy_keTL_negroot29 = "yellow",
SCIM_thy_keTL_negroot31 = "darkorange")) +
scale_linetype_manual(values = c(SCIM_sim = "solid",
SCIM_thy_keTL_negroot = "dashed",
SCIM_thy_keTL_negroot26 = "dotdash",
#SCIM_thy_keTL_negroot29 = "dotted",
SCIM_thy_keTL_negroot31 = "dashed"))
print(g)
# Compare simplified SCIMs and AFIR.
data.SCIMs2 = all_params %>%
dplyr::select(fold.change.param, SCIM_sim, SCIM_thy_keTL_negroot, SCIM_thy_keTL_negroot26, AFIR_thy, drug,param) %>%
gather(key,value,-c(fold.change.param,drug,param))
g <- ggplot(data.SCIMs2, aes(x=fold.change.param,y=value,color=key,linetype=key)) +
geom_line(size = 1, alpha = .6) +
facet_grid(drug ~ param,scales = "free_y", switch = "y") +
scale_x_log10() +
scale_y_log10() +
scale_color_manual(values = c(SCIM_sim = "gray25",
SCIM_thy_keTL_negroot = "green3",
SCIM_thy_keTL_negroot26 = "dodgerblue4",
AFIR_thy = "red")) +
scale_linetype_manual(values = c(SCIM_sim = "solid",
SCIM_thy_keTL_negroot = "dashed",
SCIM_thy_keTL_negroot26 = "dotdash",
AFIR_thy = "solid"))
print(g)
# write out sensitivity data w.r.t. different parameters
#
#
# # modify dfs for plotting to compare theory to simulation
# d.plot = bind_rows(dfs) %>%
# gather(metric_full,value,-c(param.to.change,fold.change.param,time_idx,param.to.change1,fold.change.param1,param)) %>%
# mutate(type = str_replace(metric_full,"^.*\\.",""),
# metric = str_replace(metric_full,"\\..*$",""),
# value = as.numeric(value)) %>%
# filter(type %in% c("sim","thy"))
#
# #plot theory vs simulation
# g = ggplot(d.plot,aes(x=fold.change.param,y=value,color=type,linetype=type))
#
# g = g + geom_line()
# g = g + facet_grid(metric~param, scales="free_y")
# g = g + scale.x.log10()
# g = g + scale.y.log10()
# g = g + labs(x="k_pars",
# y="Value")
# gg = ggsaveplot(width=6,height=6,dirs,"SCIM_k_pars_Accuracy")
# grid.arrange(gg)
#
#
#
#
#
#
#
#
#
#
#