forked from sudban3089/PRNU-De-identification-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNoiseExtract_MLE.m
67 lines (47 loc) · 2.15 KB
/
NoiseExtract_MLE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
%% Use this function for computing MLE test noise residual
function image_noise = NoiseExtract_MLE(Im,qmf,sigma,L)
datatype = class(Im);
switch datatype, % convert to [0,1]
case 'double', 'do nothing';
otherwise Im = double(Im);
end
[M,N] = size(Im);
Im_original = Im;
m = 2^L;
% use padding with mirrored image content
minpad=2; % minimum number of padded rows and columns as well
nr = ceil((M+minpad)/m)*m; nc = ceil((N+minpad)/m)*m; % dimensions of the padded image (always pad 8 pixels or more)
pr = ceil((nr-M)/2); % number of padded rows on the top
prd= floor((nr-M)/2); % number of padded rows at the bottom
pc = ceil((nc-N)/2); % number of padded columns on the left
pcr= floor((nc-N)/2); % number of padded columns on the right
Im = [Im(pr:-1:1,pc:-1:1), Im(pr:-1:1,:), Im(pr:-1:1,N:-1:N-pcr+1);
Im(:,pc:-1:1), Im, Im(:,N:-1:N-pcr+1);
Im(M:-1:M-prd+1,pc:-1:1),Im(M:-1:M-prd+1,:),Im(M:-1:M-prd+1,N:-1:N-pcr+1)];
% check this: Im = padarray(Im,[nr-M,nc-N],'symmetric');
% Precompute noise variance and initialize the output
NoiseVar = sigma^2;
wave_trans = zeros(nr,nc); % malloc the memory
% Wavelet decomposition, without redudance
wave_trans = mdwt(Im,qmf,L);
% Extract the noise from the wavelet coefficients
for i=1:L
% indicies of the block of coefficients
Hhigh = (nc/2+1):nc; Hlow = 1:(nc/2);
Vhigh = (nr/2+1):nr; Vlow = 1:(nr/2);
% Horizontal noise extraction
wave_trans(Vlow,Hhigh) = WaveNoise(wave_trans(Vlow,Hhigh),NoiseVar);
% Vertical noise extraction
wave_trans(Vhigh,Hlow) = WaveNoise(wave_trans(Vhigh,Hlow),NoiseVar);
% Diagonal noise extraction
wave_trans(Vhigh,Hhigh) = WaveNoise(wave_trans(Vhigh,Hhigh),NoiseVar);
nc = nc/2; nr = nr/2;
end
% Last, coarest level noise extraction
wave_trans(1:nr,1:nc) = 0;
%% MLE SPN Normalization
wave_trans = bsxfun(@times, wave_trans, 1./sqrt(sum(wave_trans.^2, 2)));
%% Inverse wavelet transform
image_noise=midwt(wave_trans,qmf,L);
%% Crop to the original size
image_noise = image_noise(pr+1:pr+M,pc+1:pc+N);