forked from Element-Research/dpnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReinforceCategorical.lua
57 lines (53 loc) · 2.26 KB
/
ReinforceCategorical.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
------------------------------------------------------------------------
--[[ ReinforceCategorical ]]--
-- Ref A. http://incompleteideas.net/sutton/williams-92.pdf
-- Inputs are a vector of categorical prob : (p[1], p[2], ..., p[k])
-- Ouputs are samples drawn from this distribution.
-- Uses the REINFORCE algorithm (ref. A sec 6. p.230-236) which is
-- implemented through the nn.Module:reinforce(r,b) interface.
-- gradOutputs are ignored (REINFORCE algorithm).
------------------------------------------------------------------------
local ReinforceCategorical, parent = torch.class("nn.ReinforceCategorical", "nn.Reinforce")
function ReinforceCategorical:updateOutput(input)
self.output:resizeAs(input)
self._index = self._index or ((torch.type(input) == 'torch.CudaTensor') and torch.CudaTensor() or torch.LongTensor())
if self.stochastic or self.train ~= false then
-- sample from categorical with p = input
self._input = self._input or input.new()
-- prevent division by zero error (see updateGradInput)
self._input:resizeAs(input):copy(input):add(0.00000001)
input.multinomial(self._index, input, 1)
-- one hot encoding
self.output:zero()
self.output:scatter(2, self._index, 1)
else
-- use p for evaluation
self.output:copy(input)
end
return self.output
end
function ReinforceCategorical:updateGradInput(input, gradOutput)
-- Note that gradOutput is ignored
-- f : categorical probability mass function
-- x : the sampled indices (one per sample) (self.output)
-- p : probability vector (p[1], p[2], ..., p[k])
-- derivative of log categorical w.r.t. p
-- d ln(f(x,p)) 1/p[i] if i = x
-- ------------ =
-- d p 0 otherwise
self.gradInput:resizeAs(input):zero()
self.gradInput:copy(self.output)
self._input = self._input or input.new()
-- prevent division by zero error
self._input:resizeAs(input):copy(input):add(0.00000001)
self.gradInput:cdiv(self._input)
-- multiply by reward
self.gradInput:cmul(self:rewardAs(input))
-- multiply by -1 ( gradient descent on input )
self.gradInput:mul(-1)
return self.gradInput
end
function ReinforceCategorical:type(type, tc)
self._index = nil
return parent.type(self, type, tc)
end