forked from Element-Research/dpnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArgMax.lua
57 lines (52 loc) · 1.92 KB
/
ArgMax.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
------------------------------------------------------------------------
--[[ ArgMax ]]--
-- Returns the index of the maxima for dimension dim.
-- Cannot backpropagate through this module.
-- Created for use with ReinforceCategorical.
------------------------------------------------------------------------
local ArgMax, parent = torch.class("nn.ArgMax", "nn.Module")
function ArgMax:__init(dim, nInputDim, asLong)
parent.__init(self)
self.dim = dim or 1
self.nInputDim = nInputDim or 9999
self.asLong = (asLong == nil) and true or asLong
if self.asLong then
self.output = torch.LongTensor()
end
end
function ArgMax:updateOutput(input)
self._value = self._value or input.new()
self._indices = self._indices or
(torch.type(input) == 'torch.CudaTensor' and torch.CudaTensor() or torch.LongTensor())
local dim = (input:dim() > self.nInputDim) and (self.dim + 1) or self.dim
torch.max(self._value, self._indices, input, dim)
if input:dim() > 1 then
local idx = self._indices:select(dim, 1)
self.output:resize(idx:size()):copy(idx)
else
self.output:resize(self._indices:size()):copy(self._indices)
end
return self.output
end
function ArgMax:updateGradInput(input, gradOutput)
-- cannot backprop from an index so just return a dummy zero tensor
self.gradInput:resizeAs(input):zero()
return self.gradInput
end
function ArgMax:type(type)
-- torch.max expects a LongTensor as indices, whereas cutorch.max expects a CudaTensor.
if type == 'torch.CudaTensor' then
parent.type(self, type)
else
-- self._indices must be a LongTensor. Setting it to nil temporarily avoids
-- unnecessary memory allocations.
local indices
indices, self._indices = self._indices, nil
parent.type(self, type)
self._indices = indices and indices:long() or nil
end
if self.asLong then
self.output = torch.LongTensor()
end
return self
end