forked from VT-NLP/Incremental_Prompting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare_inputs.py
242 lines (219 loc) · 9.91 KB
/
prepare_inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from typing import Any, List, Tuple, Union, Callable
from transformers import BertTokenizerFast
import json
import os
from tqdm import tqdm
import torch
import numpy as np
import transformers
class Instance(object):
'''
- piece_ids: L
- label: 1
- span: 2
- sentence_id: str
- mention_id: str
'''
def __init__(self, piece_ids: List[int], label: List[int], span: List[Tuple[int, int]], sentence_id: str,
mention_id: List[str]) -> None:
self.piece_ids = piece_ids
self.label = label
self.span = span
self.sentence_id = sentence_id
self.mention_id = mention_id
def todict(self,):
return {
"piece_ids": self.piece_ids,
"label": self.label,
"span": self.span,
"sentence_id": self.sentence_id,
"mention_id": self.mention_id
}
class MAVENPreprocess(object):
def __init__(self, root, tokenizer, label_start_offset=1, max_length=512, expand_context=False, split_valid=True):
super().__init__()
train_file = os.path.join(root, "train.jsonl")
dev_file = os.path.join(root, "dev.jsonl")
test_file = os.path.join(root, "test.jsonl")
self.tokenizer = tokenizer
self.max_length = max_length
self.expand_context = expand_context
self.label_start_offset = label_start_offset
self.label_ids = {}
self.collected = set()
self.model = None
train_instances = self._file(train_file)
dev_instances = self._file(dev_file)
test_instances = self._file(test_file)
with open("data/MAVEN/MAVEN.train.jsonl", "wt") as fp:
for instance in train_instances:
fp.write(json.dumps(instance.todict())+"\n")
with open("data/MAVEN/MAVEN.dev.jsonl", "wt") as fp:
for instance in dev_instances:
fp.write(json.dumps(instance.todict())+"\n")
with open("data/MAVEN/MAVEN.test.jsonl", "wt") as fp:
for instance in test_instances:
fp.write(json.dumps(instance.todict())+"\n")
def _file(self, file_path):
instances = []
with open(file_path, "rt") as fp:
for document_line in tqdm(fp):
document = json.loads(document_line)
instances.extend(self._document(document))
return instances
# modified for dealing with multiple span
def _document(self, document):
document_id = document["id"]
title = document['title']
sentences = document["content"]
events = document["events"]
none_events = document["negative_triggers"]
instances = []
labels = [[] for _ in range(len(sentences))]
spans = [[] for _ in range(len(sentences))]
mention_ids = [[] for _ in range(len(sentences))]
sentence_ids = ["" for _ in range(len(sentences))]
piece_list = [[] for _ in range(len(sentences))]
for event in events:
label = self.label_start_offset + event['type_id']
if event['type'] not in self.label_ids:
self.label_ids[event['type']] = label
for mention in event['mention']:
sentence = sentences[mention['sent_id']]
sentence_id = f"{document_id}_{mention['sent_id']}"
sent_id = mention['sent_id']
span = mention["offset"]
mention_id = mention["id"]
piece_ids, span = self._transform_single(
token_ids=sentence["tokens"],
spans=[span[0],span[0], span[1]-1, span[1]-1],
tokenizer=self.tokenizer,
is_tokenized=True)
if len(piece_list[sent_id]) == 0 and len(piece_ids) <= 342:
piece_list[sent_id].extend(piece_ids)
sentence_ids[sent_id] = sentence_id
span = (span[0], span[3])
spans[sent_id].append(span)
labels[sent_id].append(label)
mention_ids[sent_id].append(mention_id)
for mention in none_events:
sentence = sentences[mention['sent_id']]
sentence_id = f"{document_id}_{mention['sent_id']}"
span = mention["offset"]
mention_id = mention["id"]
piece_ids, span = self._transform_single(
token_ids=sentence["tokens"],
spans=[span[0],span[0], span[1]-1, span[1]-1],
tokenizer=self.tokenizer,
is_tokenized=True)
sent_id = mention['sent_id']
if len(piece_list[sent_id]) == 0:
piece_list[sent_id].extend(piece_ids)
sentence_ids[sent_id] = sentence_id
span = (span[0], span[3])
spans[sent_id].append(span)
labels[sent_id].append(0)
mention_ids[sent_id].append(mention_id)
for i in range(len(sentences)):
if len(piece_list[i]) >= 512 or len(piece_list[i]) <= 2: # ignore overlength or empty instance
continue
instance = Instance(
piece_ids=piece_list[i],
label=labels[i],
span=spans[i],
sentence_id=sentence_ids[i],
mention_id=mention_ids[i])
instances.append(instance)
return instances
def _context(self, sentences:List[List[str]]) -> List[Tuple[List[int], int, int]]:
raise NotImplementedError
@classmethod
def _transform_single(cls, token_ids: Union[List[List[str]], List[str], str], spans: Union[List[int], Tuple[int]], tokenizer: BertTokenizerFast, is_tokenized: bool=False) -> Tuple[List[int], List[int]]:
def _token_span(cls, offsets, s, e):
ts = []
i = 0
while offsets[i][0] <= s:
i += 1
ts.append(i - 1)
i -= 1
while offsets[i][1] <= e:
i += 1
ts.append(i)
return tuple(ts)
sent_id = hs = he = ts = te = 0
_token_ids = _spans = []
if len(spans) == 4:
hs, he, ts, te = spans
else:
sent_id, hs, he, ts, te = spans
if isinstance(token_ids, str):
if is_tokenized:
raise TypeError("Cannot process single string when 'is_tokenized = True'.")
else:
tokens = tokenizer(token_ids, return_offsets_mapping=True)
_token_ids = tokens["input_ids"]
offsets = tokens["offset_mapping"][1:-1]
h = _token_span(offsets, hs, he)
t = _token_span(offsets, ts, te)
_spans = [h[0] + 1, h[1] + 1, t[0] + 1, t[1] + 1]
elif isinstance(token_ids, List):
if is_tokenized:
tokens = tokenizer(token_ids, is_split_into_words=True, return_offsets_mapping=True)
if isinstance(token_ids[0], str):
_token_ids = tokens["input_ids"]
offsets = tokens["offset_mapping"]
token2piece = []
piece_idx = 1
for x, y in offsets[1:-1]:
if x == 0:
if len(token2piece) > 0:
token2piece[-1].append(piece_idx-1)
token2piece.append([piece_idx])
piece_idx += 1
if len(token2piece[-1]) == 1:
token2piece[-1].append(piece_idx-1)
_spans = [token2piece[hs][0], token2piece[he][1], token2piece[ts][0], token2piece[te][1]]
else:
token2piece = []
piece_idx = 1
for x, y in tokens["offset_mapping"][sent_id][1:-1]:
if x == 0:
if len(token2piece) > 0:
token2piece[-1].append(piece_idx-1)
token2piece.append([piece_idx])
piece_idx += 1
if len(token2piece[-1]) == 1:
token2piece[-1].append(piece_idx-1)
_spans = [token2piece[hs][0], token2piece[he][1], token2piece[ts][0], token2piece[te][1]]
_token_ids = []
for i, t in enumerate(tokens["input_ids"]):
if i == sent_id:
_spans = [_t - 1 + len(_token_ids) for _t in _spans]
if i > 0:
_token_ids.extend(t[1:])
else:
_token_ids.extend(t)
else:
tokens = tokenizer(token_ids, return_offsets_mapping=True)
if isinstance(token_ids[0], str):
offsets = tokens["offset_mapping"][sent_id][1:-1]
h = _token_span(offsets, hs, he)
t = _token_span(offsets, ts, te)
_spans = [h[0], h[1], t[0], t[1]]
_token_ids = []
for i, t in enumerate(tokens["input_ids"]):
if i == sent_id:
_spans = [_t + len(_token_ids) for _t in _spans]
if i > 0:
_token_ids.extend(t[1:])
else:
_token_ids.extend(t)
else:
raise TypeError("Cannot process list of lists of sentences (list of paragraphs).")
return _token_ids, _spans
def main():
MAVEN_PATH = "./data/MAVEN/" # path for original maven dataset
bt = BertTokenizerFast.from_pretrained("bert-large-cased")
m1 = MAVENPreprocess(MAVEN_PATH, tokenizer=bt)
if __name__ == "__main__":
main()