forked from MrGiovanni/UNetPlusPlus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions.py
291 lines (214 loc) · 12.5 KB
/
helper_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
'''
'''
import keras
import tensorflow as tf
from keras.models import Model
from keras import backend as K
from keras.layers import Input, merge, Conv2D, ZeroPadding2D, UpSampling2D, Dense, concatenate, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D, GlobalAveragePooling2D, MaxPooling2D
from keras.layers.core import Dense, Dropout, Activation
from keras.layers import BatchNormalization, Dropout, Flatten, Lambda
from keras.layers.advanced_activations import ELU, LeakyReLU
from keras.optimizers import Adam, RMSprop, SGD
from keras.regularizers import l2
from keras.layers.noise import GaussianDropout
import numpy as np
smooth = 1.
dropout_rate = 0.5
act = "relu"
def mean_iou(y_true, y_pred):
prec = []
for t in np.arange(0.5, 1.0, 0.05):
y_pred_ = tf.to_int32(y_pred > t)
score, up_opt = tf.metrics.mean_iou(y_true, y_pred_, 2)
K.get_session().run(tf.local_variables_initializer())
with tf.control_dependencies([up_opt]):
score = tf.identity(score)
prec.append(score)
return K.mean(K.stack(prec), axis=0)
# Custom loss function
def dice_coef(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return 1. - dice_coef(y_true, y_pred)
def bce_dice_loss(y_true, y_pred):
return 0.5 * keras.losses.binary_crossentropy(y_true, y_pred) - dice_coef(y_true, y_pred)
# Evaluation metric: IoU
def compute_iou(im1, im2):
overlap = (im1>0.5) * (im2>0.5)
union = (im1>0.5) + (im2>0.5)
return overlap.sum()/float(union.sum())
# Evaluation metric: Dice
def compute_dice(im1, im2, empty_score=1.0):
im1 = np.asarray(im1>0.5).astype(np.bool)
im2 = np.asarray(im2>0.5).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
im_sum = im1.sum() + im2.sum()
if im_sum == 0:
return empty_score
intersection = np.logical_and(im1, im2)
return 2. * intersection.sum() / im_sum
########################################
# 2D Standard
########################################
def standard_unit(input_tensor, stage, nb_filter, kernel_size=3):
x = Conv2D(nb_filter, (kernel_size, kernel_size), activation=act, name='conv'+stage+'_1', kernel_initializer = 'he_normal', padding='same', kernel_regularizer=l2(1e-4))(input_tensor)
x = Dropout(dropout_rate, name='dp'+stage+'_1')(x)
x = Conv2D(nb_filter, (kernel_size, kernel_size), activation=act, name='conv'+stage+'_2', kernel_initializer = 'he_normal', padding='same', kernel_regularizer=l2(1e-4))(x)
x = Dropout(dropout_rate, name='dp'+stage+'_2')(x)
return x
########################################
"""
Standard U-Net [Ronneberger et.al, 2015]
Total params: 7,759,521
"""
def U_Net(img_rows, img_cols, color_type=1, num_class=1):
nb_filter = [32,64,128,256,512]
# Handle Dimension Ordering for different backends
global bn_axis
if K.image_dim_ordering() == 'tf':
bn_axis = 3
img_input = Input(shape=(img_rows, img_cols, color_type), name='main_input')
else:
bn_axis = 1
img_input = Input(shape=(color_type, img_rows, img_cols), name='main_input')
conv1_1 = standard_unit(img_input, stage='11', nb_filter=nb_filter[0])
pool1 = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(conv1_1)
conv2_1 = standard_unit(pool1, stage='21', nb_filter=nb_filter[1])
pool2 = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(conv2_1)
conv3_1 = standard_unit(pool2, stage='31', nb_filter=nb_filter[2])
pool3 = MaxPooling2D((2, 2), strides=(2, 2), name='pool3')(conv3_1)
conv4_1 = standard_unit(pool3, stage='41', nb_filter=nb_filter[3])
pool4 = MaxPooling2D((2, 2), strides=(2, 2), name='pool4')(conv4_1)
conv5_1 = standard_unit(pool4, stage='51', nb_filter=nb_filter[4])
up4_2 = Conv2DTranspose(nb_filter[3], (2, 2), strides=(2, 2), name='up42', padding='same')(conv5_1)
conv4_2 = concatenate([up4_2, conv4_1], name='merge42', axis=bn_axis)
conv4_2 = standard_unit(conv4_2, stage='42', nb_filter=nb_filter[3])
up3_3 = Conv2DTranspose(nb_filter[2], (2, 2), strides=(2, 2), name='up33', padding='same')(conv4_2)
conv3_3 = concatenate([up3_3, conv3_1], name='merge33', axis=bn_axis)
conv3_3 = standard_unit(conv3_3, stage='33', nb_filter=nb_filter[2])
up2_4 = Conv2DTranspose(nb_filter[1], (2, 2), strides=(2, 2), name='up24', padding='same')(conv3_3)
conv2_4 = concatenate([up2_4, conv2_1], name='merge24', axis=bn_axis)
conv2_4 = standard_unit(conv2_4, stage='24', nb_filter=nb_filter[1])
up1_5 = Conv2DTranspose(nb_filter[0], (2, 2), strides=(2, 2), name='up15', padding='same')(conv2_4)
conv1_5 = concatenate([up1_5, conv1_1], name='merge15', axis=bn_axis)
conv1_5 = standard_unit(conv1_5, stage='15', nb_filter=nb_filter[0])
unet_output = Conv2D(num_class, (1, 1), activation='sigmoid', name='output', kernel_initializer = 'he_normal', padding='same', kernel_regularizer=l2(1e-4))(conv1_5)
model = Model(input=img_input, output=unet_output)
return model
"""
wU-Net for comparison
Total params: 9,282,246
"""
def wU_Net(img_rows, img_cols, color_type=1, num_class=1):
# nb_filter = [32,64,128,256,512]
nb_filter = [35,70,140,280,560]
# Handle Dimension Ordering for different backends
global bn_axis
if K.image_dim_ordering() == 'tf':
bn_axis = 3
img_input = Input(shape=(img_rows, img_cols, color_type), name='main_input')
else:
bn_axis = 1
img_input = Input(shape=(color_type, img_rows, img_cols), name='main_input')
conv1_1 = standard_unit(img_input, stage='11', nb_filter=nb_filter[0])
pool1 = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(conv1_1)
conv2_1 = standard_unit(pool1, stage='21', nb_filter=nb_filter[1])
pool2 = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(conv2_1)
conv3_1 = standard_unit(pool2, stage='31', nb_filter=nb_filter[2])
pool3 = MaxPooling2D((2, 2), strides=(2, 2), name='pool3')(conv3_1)
conv4_1 = standard_unit(pool3, stage='41', nb_filter=nb_filter[3])
pool4 = MaxPooling2D((2, 2), strides=(2, 2), name='pool4')(conv4_1)
conv5_1 = standard_unit(pool4, stage='51', nb_filter=nb_filter[4])
up4_2 = Conv2DTranspose(nb_filter[3], (2, 2), strides=(2, 2), name='up42', padding='same')(conv5_1)
conv4_2 = concatenate([up4_2, conv4_1], name='merge42', axis=bn_axis)
conv4_2 = standard_unit(conv4_2, stage='42', nb_filter=nb_filter[3])
up3_3 = Conv2DTranspose(nb_filter[2], (2, 2), strides=(2, 2), name='up33', padding='same')(conv4_2)
conv3_3 = concatenate([up3_3, conv3_1], name='merge33', axis=bn_axis)
conv3_3 = standard_unit(conv3_3, stage='33', nb_filter=nb_filter[2])
up2_4 = Conv2DTranspose(nb_filter[1], (2, 2), strides=(2, 2), name='up24', padding='same')(conv3_3)
conv2_4 = concatenate([up2_4, conv2_1], name='merge24', axis=bn_axis)
conv2_4 = standard_unit(conv2_4, stage='24', nb_filter=nb_filter[1])
up1_5 = Conv2DTranspose(nb_filter[0], (2, 2), strides=(2, 2), name='up15', padding='same')(conv2_4)
conv1_5 = concatenate([up1_5, conv1_1], name='merge15', axis=bn_axis)
conv1_5 = standard_unit(conv1_5, stage='15', nb_filter=nb_filter[0])
unet_output = Conv2D(num_class, (1, 1), activation='sigmoid', name='output', kernel_initializer = 'he_normal', padding='same', kernel_regularizer=l2(1e-4))(conv1_5)
model = Model(input=img_input, output=unet_output)
return model
"""
Standard UNet++ [Zhou et.al, 2018]
Total params: 9,041,601
"""
def UNetPlusPlus(img_rows, img_cols, color_type=1, num_class=1, deep_supervision=False):
nb_filter = [32,64,128,256,512]
# Handle Dimension Ordering for different backends
global bn_axis
if K.image_dim_ordering() == 'tf':
bn_axis = 3
img_input = Input(shape=(img_rows, img_cols, color_type), name='main_input')
else:
bn_axis = 1
img_input = Input(shape=(color_type, img_rows, img_cols), name='main_input')
conv1_1 = standard_unit(img_input, stage='11', nb_filter=nb_filter[0])
pool1 = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(conv1_1)
conv2_1 = standard_unit(pool1, stage='21', nb_filter=nb_filter[1])
pool2 = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(conv2_1)
up1_2 = Conv2DTranspose(nb_filter[0], (2, 2), strides=(2, 2), name='up12', padding='same')(conv2_1)
conv1_2 = concatenate([up1_2, conv1_1], name='merge12', axis=bn_axis)
conv1_2 = standard_unit(conv1_2, stage='12', nb_filter=nb_filter[0])
conv3_1 = standard_unit(pool2, stage='31', nb_filter=nb_filter[2])
pool3 = MaxPooling2D((2, 2), strides=(2, 2), name='pool3')(conv3_1)
up2_2 = Conv2DTranspose(nb_filter[1], (2, 2), strides=(2, 2), name='up22', padding='same')(conv3_1)
conv2_2 = concatenate([up2_2, conv2_1], name='merge22', axis=bn_axis)
conv2_2 = standard_unit(conv2_2, stage='22', nb_filter=nb_filter[1])
up1_3 = Conv2DTranspose(nb_filter[0], (2, 2), strides=(2, 2), name='up13', padding='same')(conv2_2)
conv1_3 = concatenate([up1_3, conv1_1, conv1_2], name='merge13', axis=bn_axis)
conv1_3 = standard_unit(conv1_3, stage='13', nb_filter=nb_filter[0])
conv4_1 = standard_unit(pool3, stage='41', nb_filter=nb_filter[3])
pool4 = MaxPooling2D((2, 2), strides=(2, 2), name='pool4')(conv4_1)
up3_2 = Conv2DTranspose(nb_filter[2], (2, 2), strides=(2, 2), name='up32', padding='same')(conv4_1)
conv3_2 = concatenate([up3_2, conv3_1], name='merge32', axis=bn_axis)
conv3_2 = standard_unit(conv3_2, stage='32', nb_filter=nb_filter[2])
up2_3 = Conv2DTranspose(nb_filter[1], (2, 2), strides=(2, 2), name='up23', padding='same')(conv3_2)
conv2_3 = concatenate([up2_3, conv2_1, conv2_2], name='merge23', axis=bn_axis)
conv2_3 = standard_unit(conv2_3, stage='23', nb_filter=nb_filter[1])
up1_4 = Conv2DTranspose(nb_filter[0], (2, 2), strides=(2, 2), name='up14', padding='same')(conv2_3)
conv1_4 = concatenate([up1_4, conv1_1, conv1_2, conv1_3], name='merge14', axis=bn_axis)
conv1_4 = standard_unit(conv1_4, stage='14', nb_filter=nb_filter[0])
conv5_1 = standard_unit(pool4, stage='51', nb_filter=nb_filter[4])
up4_2 = Conv2DTranspose(nb_filter[3], (2, 2), strides=(2, 2), name='up42', padding='same')(conv5_1)
conv4_2 = concatenate([up4_2, conv4_1], name='merge42', axis=bn_axis)
conv4_2 = standard_unit(conv4_2, stage='42', nb_filter=nb_filter[3])
up3_3 = Conv2DTranspose(nb_filter[2], (2, 2), strides=(2, 2), name='up33', padding='same')(conv4_2)
conv3_3 = concatenate([up3_3, conv3_1, conv3_2], name='merge33', axis=bn_axis)
conv3_3 = standard_unit(conv3_3, stage='33', nb_filter=nb_filter[2])
up2_4 = Conv2DTranspose(nb_filter[1], (2, 2), strides=(2, 2), name='up24', padding='same')(conv3_3)
conv2_4 = concatenate([up2_4, conv2_1, conv2_2, conv2_3], name='merge24', axis=bn_axis)
conv2_4 = standard_unit(conv2_4, stage='24', nb_filter=nb_filter[1])
up1_5 = Conv2DTranspose(nb_filter[0], (2, 2), strides=(2, 2), name='up15', padding='same')(conv2_4)
conv1_5 = concatenate([up1_5, conv1_1, conv1_2, conv1_3, conv1_4], name='merge15', axis=bn_axis)
conv1_5 = standard_unit(conv1_5, stage='15', nb_filter=nb_filter[0])
nestnet_output_1 = Conv2D(num_class, (1, 1), activation='sigmoid', name='output_1', kernel_initializer = 'he_normal', padding='same', kernel_regularizer=l2(1e-4))(conv1_2)
nestnet_output_2 = Conv2D(num_class, (1, 1), activation='sigmoid', name='output_2', kernel_initializer = 'he_normal', padding='same', kernel_regularizer=l2(1e-4))(conv1_3)
nestnet_output_3 = Conv2D(num_class, (1, 1), activation='sigmoid', name='output_3', kernel_initializer = 'he_normal', padding='same', kernel_regularizer=l2(1e-4))(conv1_4)
nestnet_output_4 = Conv2D(num_class, (1, 1), activation='sigmoid', name='output_4', kernel_initializer = 'he_normal', padding='same', kernel_regularizer=l2(1e-4))(conv1_5)
if deep_supervision:
model = Model(input=img_input, output=[nestnet_output_1,
nestnet_output_2,
nestnet_output_3,
nestnet_output_4])
else:
model = Model(input=img_input, output=[nestnet_output_4])
return model
if __name__ == '__main__':
model = U_Net(96,96,1)
model.summary()
model = wU_Net(96,96,1)
model.summary()
model = UNetPlusPlus(96,96,1)
model.summary()