-
Notifications
You must be signed in to change notification settings - Fork 1
/
GWO.py
161 lines (112 loc) · 5.49 KB
/
GWO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import random
import numpy
import math
from solution import solution
import time
import transfer_functions_benchmark
import fitnessFUNs
def GWO(objf,lb,ub,dim,SearchAgents_no,Max_iter,trainInput,trainOutput):
#Max_iter=1000
#lb=-100
#ub=100
#dim=30
#SearchAgents_no=5
# initialize alpha, beta, and delta_pos
Alpha_pos=numpy.zeros(dim)
Alpha_score=float("inf")
Beta_pos=numpy.zeros(dim)
Beta_score=float("inf")
Delta_pos=numpy.zeros(dim)
Delta_score=float("inf")
#initialization stage of positions of the search agents(either continuous or discrete (binary) individual generation)
# Positions=numpy.random.uniform(0,1,(SearchAgents_no,dim)) *(ub-lb)+lb #generating continuous individuals
Positions=numpy.random.randint(2, size=(SearchAgents_no,dim)) #generating binary individuals
Convergence_curve1=numpy.zeros(Max_iter)
Convergence_curve2=numpy.zeros(Max_iter)
s=solution()
# Loop counter
print("\nGWO is optimizing \""+objf.__name__+"\"")
timerStart=time.time()
s.startTime=time.strftime("%Y-%m-%d-%H-%M-%S")
# Main loop
for l in range(0,Max_iter):
for i in range(0,SearchAgents_no):
# Return back the search agents that go beyond the boundaries of the search space
Positions[i,:]=numpy.clip(Positions[i,:], lb, ub)
# the following statement insures that at least one feature is selected
#(i.e the randomly generated individual has at least one value 1)
while numpy.sum(Positions[i,:])==0:
Positions[i,:]=numpy.random.randint(2, size=(1,dim))
# Calculate objective function for each search agent
fitness=objf(Positions[i,:],trainInput,trainOutput,dim)
# Update Alpha, Beta, and Delta
if fitness<Alpha_score :
Alpha_score=fitness; # Update alpha
Alpha_pos=Positions[i,:].copy()
if (fitness>Alpha_score and fitness<Beta_score ):
Beta_score=fitness # Update beta
Beta_pos=Positions[i,:].copy()
if (fitness>Alpha_score and fitness>Beta_score and fitness<Delta_score):
Delta_score=fitness # Update delta
Delta_pos=Positions[i,:].copy()
a=2-l*((2)/Max_iter); # a decreases linearly fron 2 to 0
# Update the Position of search agents including omegas
for i in range(0,SearchAgents_no):
for j in range (0,dim):
r1=random.random() # r1 is a random number in [0,1]
r2=random.random() # r2 is a random number in [0,1]
A1=2*a*r1-a; # Equation (3.3)
C1=2*r2; # Equation (3.4)
D_alpha=abs(C1*Alpha_pos[j]-Positions[i,j]); # Equation (3.5)-part 1
# X1=Alpha_pos[j]-A1*D_alpha; # Equation (3.6)-part 1
temp=transfer_functions_benchmark.s1(A1*D_alpha)
if temp<numpy.random.uniform(0,1):
temp=0
else:
temp=1
if (Alpha_pos[j]+temp)>=1:
X1=Alpha_pos[j]+temp
r1=random.random()
r2=random.random()
A2=2*a*r1-a; # Equation (3.3)
C2=2*r2; # Equation (3.4)
D_beta=abs(C2*Beta_pos[j]-Positions[i,j]); # Equation (3.5)-part 2
# X2=Beta_pos[j]-A2*D_beta; # Equation (3.6)-part 2
temp=transfer_functions_benchmark.s1(A2*D_beta)
if temp<numpy.random.uniform(0,1):
temp=0
else:
temp=1
if (Beta_pos[j]+temp)>=1:
X2=Beta_pos[j]+temp
r1=random.random()
r2=random.random()
A3=2*a*r1-a; # Equation (3.3)
C3=2*r2; # Equation (3.4)
D_delta=abs(C3*Delta_pos[j]-Positions[i,j]); # Equation (3.5)-part 3
# X3=Delta_pos[j]-A3*D_delta; # Equation (3.5)-part 3
temp=transfer_functions_benchmark.s1(A3*D_delta)
if temp<numpy.random.uniform(0,1):
temp=0
else:
temp=1
if (Delta_pos[j]+temp)>=1:
X3=Delta_pos[j]+temp
Positions[i,j]=(X1+X2+X3)/3 # Equation (3.7)
featurecount=0
for f in range(0,dim):
if Alpha_pos[f]==1:
featurecount=featurecount+1
Convergence_curve1[l]=Alpha_score;
Convergence_curve2[l]=featurecount;
if (l%1==0):
print(['At iteration'+ str(l+1)+' the best fitness on training is:'+ str(Alpha_score)+', the best number of features: '+str(featurecount)]);
timerEnd=time.time()
s.endTime=time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime=timerEnd-timerStart
s.bestIndividual=Alpha_pos
s.convergence1=Convergence_curve1
s.convergence2=Convergence_curve2
s.optimizer="GWO"
s.objfname=objf.__name__
return s