-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
44 lines (43 loc) · 1.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# -*- coding: utf-8 -*-
import sys
import ner
if __name__ == '__main__':
if len(sys.argv) < 2:
print("调用方法: python main.py [method] [params]")
print("-以下是method参数的说明:")
print("train: 用数据训练CRF模型 (main.py train [filename])")
print("ner: 用训练好的模型来对输入的文本进行命名实体识别 (main.py ner 北京今天天气真好呀)")
print(" 或者从文件中读取待分析文本,结果输出到文件 (main.py ner -f [origin_filename] [output_filename])")
print("report: 用给定数据文件进行准确率、召回率、F1值的评估,显示出评估结果(main.py report [filename])")
exit(0)
method=sys.argv[1]
if method == 'train':
if(len(sys.argv)>=3):
train_file=sys.argv[2]
ner.load(train_file=train_file)
else:
ner.load()
ner.train()
elif method == 'ner':
if len(sys.argv)>=3 and sys.argv[2]!='-f':
text=sys.argv[2]
print(ner.ner(text))
elif len(sys.argv)>=5 and sys.argv[2]=='-f':
input_file_path=sys.argv[3]
output_file_path=sys.argv[4]
input_file=open(input_file_path,'r',encoding='utf-8')
result=ner.ner(input_file.read())
output_file= open(output_file_path,'w',encoding='utf-8')
try:
output_file.write(result)
finally:
output_file.close()
else:
print("格式不对")
elif method=='report':
if (len(sys.argv) >= 3):
test_file = sys.argv[2]
ner.load(test_file=test_file)
else:
ner.load()
ner.tagger()