-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdata_format.py
193 lines (176 loc) · 5.24 KB
/
data_format.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# -*- coding: utf-8 -*-
# 将统一化的输入数据格式化为list
def format_data1():
res=list()
res_line=list()
tmp=load_data('weiboNER.conll.train')
for line in tmp:
tmpres=line.replace('\n','').split('\t')
if(tmpres.__len__()<2):
res.append(res_line)
res_line=list()
continue
# print(tmpres)
d1=tmpres[0]
d2=tmpres[1]
if(d2.split('.').__len__()>=2):
d2=d2.split('.')[0]
res_line.append((d1,d2))
# res.append(res_line)
print(res)
# 将boson的数据中的实体名转化为标准实体名
def get_type(text):
if text.__contains__('product_name'):
return 'PRO'
elif text.__contains__('person_name'):
return 'PER'
elif text.__contains__('time'):
return 'TIM'
elif text.__contains__('org_name'):
return 'ORG'
elif text.__contains__('company_name'):
return 'ORG'
elif text.__contains__('location'):
return 'LOC'
else:
return 'O'
def get_type_encode(text):
if text.__contains__('PRO'):
return 'product_name'
elif text.__contains__('PER'):
return 'person_name'
elif text.__contains__('TIM'):
return 'time'
elif text.__contains__('ORG'):
return 'org_name'
elif text.__contains__('LOC'):
return 'location'
else:
return 'unknown'
# 将boson数据格式归一化为系统内部的格式
def format_boson_data(file_name='corpus/BosonNLP_NER_6C.txt'):
res=list()
tmp = load_data(file_name)
for line in tmp:
state=0
lastc=''
ename=""
for c in line:
if c=='{' and state==0:
state=1
elif c=='{' and lastc=='{' and state==1:
state=2
elif c==':' and state==2:
state=3
elif c=='}' and state==4:
state=5
elif c=='}' and lastc=='}' and state==5:
state=0
elif state==0 and c!=' ' and c!='\n':
res.append(c+" O")
elif state==2:
ename+=c
elif state==3 and c!=' ':
ename=get_type(ename)
res.append(c+" B-"+ename)
state=4
elif state==4:
res.append(c + " I-" + ename)
lastc=c
res.append("")
print(res)
# save
file=open("corpus/boson_ner_format.txt",'w',encoding='utf-8')
try:
# file.writelines(res)
for item in res:
file.write(item+"\n")
# file.write("\r\n")
# print("\r")
finally:
file.close()
# 输出按boson语料的格式规范化后的命名实体标记
def format_boson_data_encode(text,tag):
res=""
status=0
for i in range(len(text)):
if status == 0 and tag[i] == 'O':
res += text[i]
elif status == 0 and tag[i] != 'O':
status = 1
res += "{{" + get_type_encode(tag[i]) + ":" + text[i]
elif status == 1 and str(tag[i]).startswith('I'):
res += text[i]
elif status == 1:
res += "}}"
if tag[i] == 'O':
status = 0
res += text[i]
else:
status = 1
res += "{{" + get_type_encode(tag[i]) + ":" + text[i]
return res
import jieba.posseg as jbpos
# import jieba.analyse as jbal
# 为token填充分词标记和词性标记
def get_cut_and_seg(token):
wordlist = jbpos.cut(get_sentence(token))
res = list()
index=0
for w in wordlist:
for i in range(len(w.word)):
if len(w.word) == 1:
status = 'S'
elif i == 0:
status = 'B'
elif i == len(w.word) - 1:
status = 'E'
else:
status = 'I'
token[index][1]=status
token[index][2]=w.flag
index += 1
return res
# 把token序列组合成原句
def get_sentence(token):
sentence= ''
for t in token:
sentence += t[0]
return sentence
# 读入数据
def load_data(path):
file=open(path,'r',encoding='utf-8')
res=list()
try:
lines=file.readlines()
# print(lines)
res_line=list()
for item in lines:
if item.split(' ').__len__()>=2:
word=item.split(' ')[0]
type=item.split(' ')[1].replace('\n','').replace('\r','')
res_line.append([word,'','',type])
else:
get_cut_and_seg(res_line)
res.append(res_line)
res_line=list()
finally:
file.close()
# print(res)
return res
# 将句子切分为一个一个的字,用于输入实体识别
def split_by_words(sentence):
res=list()
for word in sentence:
res.append([word,'','',''])
get_cut_and_seg(res)
return res
def merge_data():
f1=open('corpus/example.train','r',encoding='utf-8')
f2=open('corpus/bosen_ner_format.txt','r',encoding='utf-8')
output=open('corpus/merge.train','w',encoding='utf-8')
if __name__ == '__main__':
# load()
# train()
# tagger()
print(split_by_words('洗衣机,国内掀起了大数据、云计算的热潮。仙鹤门地区。'))