-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheval_tsplib.py
174 lines (140 loc) · 7.22 KB
/
eval_tsplib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import math
import torch
import argparse
import numpy as np
from tqdm import tqdm
from utils import load_model
from torch.utils.data import DataLoader
import time
from utils.functions import reconnect
from utils.functions import load_problem
import pprint as pp
from utils.insertion import random_insertion
torch.manual_seed(1)
def eval_dataset(dataset_path, opts):
pp.pprint(vars(opts))
use_cuda = torch.cuda.is_available() and not opts.no_cuda
device_id = opts.device_id
device = torch.device(f"cuda:{device_id}" if use_cuda else "cpu")
print('using device:', device)
revisers = []
assert opts.problem_type == 'tsp'
revision_lens = opts.revision_lens
for reviser_size in revision_lens:
reviser_path = f'pretrained/Reviser-stage2/reviser_{reviser_size}/epoch-299.pt'
reviser, _ = load_model(reviser_path, is_local=True)
revisers.append(reviser)
for reviser in revisers:
reviser.to(device)
reviser.eval()
reviser.set_decode_type(opts.decode_strategy)
dataset = reviser.problem.make_dataset(filename=dataset_path, num_samples=opts.val_size, offset=0)
results, duration = _eval_dataset(dataset, opts, device, revisers)
costs, costs_revised, tours = zip(*results) # Not really costs since they should be negative
costs = torch.tensor(costs)
costs_revised = torch.cat(costs_revised, dim=0)
# tours = torch.cat(tours, dim=0)
print("Average cost: {} +- {}".format(costs.mean(), (2 * torch.std(costs) / math.sqrt(len(costs))).item()))
print("Average cost_revised: {} +- {}".format(costs_revised.mean().item(), (2 * torch.std(costs_revised) / math.sqrt(len(costs_revised))).item()))
print("Total duration: {}".format(duration))
def _eval_dataset(dataset, opts, device, revisers):
dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size)
problem = load_problem(opts.problem_type)
# cost function for partial solution
get_cost_func = lambda input, pi: problem.get_costs(input, pi, return_local=True)
results = []
total_time = 0
for batch_id, batch in tqdm(enumerate(dataloader), disable=opts.no_progress_bar):
# tsp batch shape: (bs, problem size, 2)
avg_cost = 0
width = opts.width
problem_size = batch.shape[1]
print('problem size:', problem_size)
with torch.no_grad():
if problem_size <= 100:
width //= 4
orders = [torch.randperm(problem_size) for i in range(width)]
start = time.time()
pi_batch = [random_insertion(instance, orders[order_id])[0] for order_id in range(len(orders)) for instance in batch]
pi_batch = torch.tensor(np.array(pi_batch).astype(np.int64)).reshape(-1, problem_size)
total_time += time.time() - start
batch = batch.repeat(width, 1, 1)
seed = batch.gather(1, pi_batch.unsqueeze(-1).expand_as(batch))
seed = seed.to(device)
cost_ori = (seed[:, 1:] - seed[:, :-1]).norm(p=2, dim=2).sum(1) + (seed[:, 0] - seed[:, -1]).norm(p=2, dim=1)
cost_ori, _ = cost_ori.reshape(-1, opts.eval_batch_size).min(0) # width, bs
avg_cost = cost_ori.mean().item()
print('before revision:', avg_cost)
if problem_size <= 100:
seed2 = torch.cat((1 - seed[:, :, [0]], seed[:, :, [1]]), dim=2)
seed3 = torch.cat((seed[:, :, [0]], 1 - seed[:, :, [1]]), dim=2)
seed4 = torch.cat((1 - seed[:, :, [0]], 1 - seed[:, :, [1]]), dim=2)
seed = torch.cat((seed, seed2, seed3, seed4), dim=0)
w = seed.shape[0] // opts.eval_batch_size
print(f'Sample width = {w}')
if problem_size < 20:
raise AssertionError
elif 20 <= problem_size < 50:
_revisers = revisers[2:]
opts.no_aug = True
opts.revision_lens = [20, 10]
opts.revision_iters = [10, 5] # 2,1
elif 50<= problem_size < 100:
opts.no_aug = True
_revisers = revisers[1:3]
opts.revision_lens = [50, 20]
opts.revision_iters = [10, 5] # 2,1
elif 100<=problem_size< 150:
opts.no_aug = True
opts.revision_lens = [100, 50, 20]
_revisers = revisers[:3]
opts.revision_iters = [10,5,5] # 4,2,1
else:
_revisers = revisers[:3]
opts.revision_lens = [100, 50, 20]
opts.revision_iters = [10,10,5] # 4,2,1
start = time.time()
tours, costs_revised = reconnect(
get_cost_func=get_cost_func,
batch=seed,
opts=opts,
revisers=_revisers,
)
total_time += time.time() - start
# tours shape: problem_size, 2
# costs: costs before revision
# costs_revised: costs after revision
if costs_revised is not None:
print('cost_revised:', costs_revised.item())
results.append((avg_cost, costs_revised, tours))
else:
results.append((avg_cost, None, tours))
return results, total_time
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--problem_size", type=int, default=200)
parser.add_argument("--problem_type", type=str, default='tsp')
parser.add_argument('--val_size', type=int, default=128,
help='Number of instances used for reporting validation performance')
parser.add_argument('--eval_batch_size', type=int, default=128,
help="Batch size to use during (baseline) evaluation")
parser.add_argument('--revision_lens', nargs='+', default=[100,50,20,10] ,type=int,
help='The sizes of revisers')
parser.add_argument('--revision_iters', nargs='+', default=[20,50,10,], type=int,
help='Revision iterations (I_n)')
parser.add_argument('--decode_strategy', type=str, default='sampling', help='decode strategy of the model')
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA')
parser.add_argument("--device_id", type=int, default=0)
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar')
parser.add_argument('--width', type=int, default=1, # 128 / 48
help='The initial solutions for a TSP instance generated with diversified insertion')
parser.add_argument('--no_aug', action='store_true', help='Disable instance augmentation')
parser.add_argument('--path', type=str, default='',
help='The test dataset path for cross-distribution evaluation')
parser.add_argument('--no_prune', action='store_true', help='Do not prune the unpromising tours after the first round of revisions')
opts = parser.parse_args()
if opts.path == '':
dataset_path = f'data/tsp/tsp{opts.problem_size}_test.pkl'
else:
dataset_path = opts.path
eval_dataset(dataset_path, opts)