This README contains instructions to run a demo for vLLM, an open-source library for fast LLM inference and serving, which improves the throughput compared to HuggingFace by up to 24x.
Install the latest SkyPilot and check your setup of the cloud credentials:
pip install git+https://github.com/skypilot-org/skypilot.git
sky check
See the vLLM SkyPilot YAML for serving.
- Start the serving the LLaMA-65B model on 8 A100 GPUs:
sky launch -c vllm-serve -s serve.yaml
- Check the output of the command. There will be a sharable gradio link (like the last line of the following). Open it in your browser to use the LLaMA model to do the text completion.
(task, pid=7431) Running on public URL: https://a8531352b74d74c7d2.gradio.live
- Optional: Serve the 13B model instead of the default 65B and use less GPU:
sky launch -c vllm-serve -s serve.yaml --gpus A100:1 --env MODEL_NAME=decapoda-research/llama-13b-hf