-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathunsupervised_DA_office10.m
51 lines (49 loc) · 2.47 KB
/
unsupervised_DA_office10.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% =====================================================================
% Code for conference paper:
% Qian Wang, Penghui Bu, Toby Breckon, Unifying Unsupervised Domain
% Adaptation and Zero-Shot Visual Recognition, IJCNN 2019
% By Qian Wang, [email protected]
% =====================================================================
%% Loading Data:
% Features are extracted using resnet101 pretrained on ImageNet without
% fine-tuning
clear all
addpath('./utils/');
%data_dir = './JGSA-r/data/GFKdata/';
data_dir = '../Office10/decaf/';
domains = {'caltech','amazon','dslr','webcam'};
for source_domain_index = 2%1:length(domains)
%load([data_dir domains{source_domain_index} '_zscore_SURF_L10']);
load([data_dir domains{source_domain_index} '_decaf.mat']);
domainS_features = L2Norm(feas);
%domainS_features = feas;
domainS_labels = labels';
for target_domain_index = 1:length(domains)
if target_domain_index == source_domain_index
continue;
end
fprintf('Source domain: %s, Target domain: %s\n',domains{source_domain_index},domains{target_domain_index});
%load([data_dir domains{target_domain_index} '_zscore_SURF_L10']);
load([data_dir domains{target_domain_index} '_decaf.mat']);
domainT_features = L2Norm(feas);
%domainT_features = feas;
domainT_labels = labels';
num_class = length(unique(domainT_labels));
%% Baseline method: using 1-NN, only labelled source data for training
fprintf('Baseline method using 1NN:\n');
classifierType='1nn';
acc= func_recognition(domainS_features,domainT_features,domainS_labels,domainT_labels,classifierType);
%% Baseline method: using NC, only labelled source data for training
% fprintf('Baseline method using NC:\n');
% classifierType='nc';
% acc= func_recognition(domainS_features,domainT_features,domainS_labels,domainT_labels,classifierType);
%% Baseline method: using SVM, only labelled source data for training
% fprintf('Baseline method using SVM:\n');
% classifierType='svm';
% acc= func_recognition(domainS_features,domainT_features,domainS_labels,domainT_labels,classifierType);
%% Proposed method:
%fprintf('Proposed method using 1NN:\n');
acc_per_class = DA_LPP(domainS_features,domainS_labels,domainT_features,domainT_labels);
%acc_per_class = DA_LDA(domainS_features,domainS_labels,domainT_features,domainT_labels);
end
end