forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stacks-cohomology.tex
2496 lines (2280 loc) · 96.6 KB
/
stacks-cohomology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Cohomology of Algebraic Stacks}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we write about cohomology of algebraic stacks.
This mean in particular cohomology of quasi-coherent sheaves, i.e.,
we prove analogues of the results in the chapters entitled
``Cohomology of Schemes'' and ``Cohomology of Algebraic Spaces''.
The results in this chapter are different
from those in \cite{LM-B} mainly because we consistently use the
``big sites''. Before reading this chapter please take a quick look at
the chapter ``Sheaves on Algebraic Stacks'' in order to become
familiar with the terminology introduced there, see
Sheaves on Stacks, Section \ref{stacks-sheaves-section-introduction}.
\section{Conventions and abuse of language}
\label{section-conventions}
\noindent
We continue to use the conventions and the abuse of language
introduced in
Properties of Stacks, Section \ref{stacks-properties-section-conventions}.
\section{Notation}
\label{section-notation}
\noindent
Different topologies. If we indicate an algebraic stack by a calligraphic
letter, such as $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$, then the notation
$\mathcal{X}_{Zar}, \mathcal{X}_\etale, \mathcal{X}_{smooth},
\mathcal{X}_{syntomic}, \mathcal{X}_{fppf}$ indicates the site introduced
in
Sheaves on Stacks, Definition
\ref{stacks-sheaves-definition-inherited-topologies}.
(Think ``big site''.) Correspondingly the structure sheaf of
$\mathcal{X}$ is a sheaf on $\mathcal{X}_{fppf}$.
On the other hand, algebraic spaces and schemes
are usually indicated by roman capitals, such as $X, Y, Z$, and in this case
$X_\etale$ indicates the small \'etale site of $X$ (as
defined in
Topologies, Definition
\ref{topologies-definition-big-small-etale}
or
Properties of Spaces, Definition
\ref{spaces-properties-definition-etale-site}).
It seems that the distinction should be clear enough.
\medskip\noindent
The default topology is the fppf topology. Hence we will sometimes
say ``sheaf on $\mathcal{X}$'' or ``sheaf of $\mathcal{O}_\mathcal{X}$''
modules when we mean sheaf on $\mathcal{X}_{fppf}$ or object of
$\textit{Mod}(\mathcal{X}_{fppf}, \mathcal{O}_\mathcal{X})$.
\medskip\noindent
If $f : \mathcal{X} \to \mathcal{Y}$ is a morphism of algebraic
stacks, then the functors $f_*$ and $f^{-1}$ defined on presheaves
preserves sheaves for any of the topologies mentioned above. In particular
when we discuss the pushforward or pullback of a sheaf we don't have to
mention which topology we are working with. The same isn't true
when we compute cohomology groups and/or higher direct images. In this
case we will always mention which topology we are working with.
\medskip\noindent
Suppose that $f : X \to \mathcal{Y}$ is a morphism from an algebraic
space $X$ to an algebraic stack $\mathcal{Y}$. Let $\mathcal{G}$ be
a sheaf on $\mathcal{Y}_\tau$ for some topology $\tau$. In this case
$f^{-1}\mathcal{G}$ is a sheaf for the $\tau$ topology on $\mathcal{S}_X$
(the algebraic stack associated to $X$) because (by our conventions) $f$
really is a $1$-morphism $f : \mathcal{S}_X \to \mathcal{Y}$.
If $\tau = \etale$ or stronger, then we write
$f^{-1}\mathcal{G}|_{X_\etale}$
to denote the restriction to the \'etale site of $X$, see
Sheaves on Stacks, Section \ref{stacks-sheaves-section-compare}.
If $\mathcal{G}$ is an $\mathcal{O}_\mathcal{X}$-module we sometimes
write $f^*\mathcal{G}$ and $f^*\mathcal{G}|_{X_\etale}$
instead.
\section{Pullback of quasi-coherent modules}
\label{section-pullback}
\noindent
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
It is a very general fact that quasi-coherent modules on ringed topoi
are compatible with pullbacks. In particular the pullback $f^*$ preserves
quasi-coherent modules and we obtain a functor
$$
f^* :
\QCoh(\mathcal{O}_\mathcal{Y})
\longrightarrow
\QCoh(\mathcal{O}_\mathcal{X}),
$$
see Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-pullback-quasi-coherent}.
In general this functor isn't exact, but if $f$ is flat then it is.
\begin{lemma}
\label{lemma-flat-pullback-quasi-coherent}
If $f : \mathcal{X} \to \mathcal{Y}$ is a flat morphism of algebraic stacks
then $f^* : \QCoh(\mathcal{O}_\mathcal{Y}) \to
\QCoh(\mathcal{O}_\mathcal{X})$ is an exact functor.
\end{lemma}
\begin{proof}
Choose a scheme $V$ and a surjective smooth morphism $V \to \mathcal{Y}$.
Choose a scheme $U$ and a surjective smooth morphism
$U \to V \times_\mathcal{Y} \mathcal{X}$. Then $U \to \mathcal{X}$ is
still smooth and surjective as a composition of two such morphisms.
From the commutative diagram
$$
\xymatrix{
U \ar[d] \ar[r]_{f'} & V \ar[d] \\
\mathcal{X} \ar[r]^f & \mathcal{Y}
}
$$
we obtain a commutative diagram
$$
\xymatrix{
\QCoh(\mathcal{O}_U) & \QCoh(\mathcal{O}_V) \ar[l] \\
\QCoh(\mathcal{O}_\mathcal{X}) \ar[u] &
\QCoh(\mathcal{O}_\mathcal{Y}) \ar[l] \ar[u]
}
$$
of abelian categories. Our proof that the bottom two categories in this
diagram are abelian showed that the vertical functors are faithful
exact functors (see proof of
Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-quasi-coherent-algebraic-stack}).
Since $f'$ is a flat morphism of schemes (by our definition of
flat morphisms of algebraic stacks) we see that $(f')^*$ is an
exact functor on quasi-coherent sheaves on $V$. Thus we win.
\end{proof}
\section{The key lemma}
\label{section-key}
\noindent
The following lemma is the basis for our understanding of
higher direct images of certain types of sheaves of modules.
There are two versions: one for the \'etale topology and
one for the fppf topology.
\begin{lemma}
\label{lemma-general-pushforward}
Let $\mathcal{M}$ be a rule which associates to every algebraic stack
$\mathcal{X}$ a subcategory $\mathcal{M}_\mathcal{X}$ of
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
such that
\begin{enumerate}
\item $\mathcal{M}_\mathcal{X}$ is a weak Serre subcategory
of $\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
(see Homology, Definition \ref{homology-definition-serre-subcategory})
for all algebraic stacks $\mathcal{X}$,
\item for a smooth morphism of algebraic stacks
$f : \mathcal{Y} \to \mathcal{X}$ the functor $f^*$ maps
$\mathcal{M}_\mathcal{X}$ into $\mathcal{M}_\mathcal{Y}$,
\item if $f_i : \mathcal{X}_i \to \mathcal{X}$ is a family of smooth
morphisms of algebraic stacks with
$|\mathcal{X}| = \bigcup |f_i|(|\mathcal{X}_i|)$, then an object
$\mathcal{F}$ of
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
is in $\mathcal{M}_\mathcal{X}$ if and only if
$f_i^*\mathcal{F}$ is in $\mathcal{M}_{\mathcal{X}_i}$ for all $i$, and
\item if $f : \mathcal{Y} \to \mathcal{X}$ is a morphism of algebraic
stacks such that $\mathcal{X}$ and $\mathcal{Y}$ are representable
by affine schemes, then $R^if_*$ maps $\mathcal{M}_\mathcal{Y}$
into $\mathcal{M}_\mathcal{X}$.
\end{enumerate}
Then for any quasi-compact and quasi-separated morphism
$f : \mathcal{Y} \to \mathcal{X}$ of algebraic stacks
$R^if_*$ maps $\mathcal{M}_\mathcal{Y}$
into $\mathcal{M}_\mathcal{X}$. (Higher direct images computed in \'etale
topology.)
\end{lemma}
\begin{proof}
Let $f : \mathcal{Y} \to \mathcal{X}$ be a quasi-compact and quasi-separated
morphism of algebraic stacks and let $\mathcal{F}$ be an object of
$\mathcal{M}_\mathcal{Y}$. Choose a surjective smooth morphism
$\mathcal{U} \to \mathcal{X}$ where $\mathcal{U}$ is representable by
a scheme. By
Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-base-change-higher-direct-images}
taking higher direct images commutes with base change.
Assumption (2) shows that the pullback of $\mathcal{F}$
to $\mathcal{U} \times_\mathcal{X} \mathcal{Y}$ is in
$\mathcal{M}_{\mathcal{U} \times_\mathcal{X} \mathcal{Y}}$
because the projection
$\mathcal{U} \times_\mathcal{X} \mathcal{Y} \to \mathcal{Y}$
is smooth as a base change of a smooth morphism. Hence (3) shows we may
replace $\mathcal{Y} \to \mathcal{X}$ by the projection
$\mathcal{U} \times_\mathcal{X} \mathcal{Y} \to \mathcal{U}$.
In other words, we may assume that $\mathcal{X}$
is representable by a scheme.
Using (3) once more, we see that the question is Zariski local on
$\mathcal{X}$, hence we may assume that $\mathcal{X}$ is representable by
an affine scheme. Since $f$ is quasi-compact this implies that also
$\mathcal{Y}$ is quasi-compact. Thus we may choose a surjective smooth
morphism $g : \mathcal{V} \to \mathcal{Y}$ where $\mathcal{V}$ is representable
by an affine scheme.
\medskip\noindent
In this situation we have the spectral sequence
$$
E_2^{p, q} = R^q(f \circ g_p)_*g_p^*\mathcal{F}
\Rightarrow
R^{p + q}f_*\mathcal{F}
$$
of
Sheaves on Stacks, Proposition
\ref{stacks-sheaves-proposition-smooth-covering-compute-direct-image}.
Recall that this is the spectral sequence associated to a double
complex. By assumption (1) we may use
Homology, Remark \ref{homology-remark-weak-serre-subcategory}.
Note that the morphisms
$$
g_p : \mathcal{V}_p =
\mathcal{V} \times_\mathcal{Y} \ldots \times_\mathcal{Y} \mathcal{V}
\longrightarrow
\mathcal{Y}
$$
are smooth as compositions of base changes of the smooth morphism $g$.
Thus the sheaves $g_p^*\mathcal{F}$ are in
$\mathcal{M}_{\mathcal{V}_p}$ by (2). Hence it suffices to prove that the
higher direct images of objects of $\mathcal{M}_{\mathcal{V}_p}$ under
the morphisms
$$
\mathcal{V}_p =
\mathcal{V} \times_\mathcal{Y} \ldots \times_\mathcal{Y} \mathcal{V}
\longrightarrow
\mathcal{X}
$$
are in $\mathcal{M}_\mathcal{X}$. The algebraic stacks $\mathcal{V}_p$
are quasi-compact and quasi-separated by
Morphisms of Stacks, Lemma
\ref{stacks-morphisms-lemma-quasi-compact-quasi-separated-permanence}.
Of course each $\mathcal{V}_p$ is representable by an algebraic space
(the diagonal of the algebraic stack $\mathcal{Y}$ is representable
by algebraic spaces). This reduces us to the case where
$\mathcal{Y}$ is representable by an algebraic space and $\mathcal{X}$
is representable by an affine scheme.
\medskip\noindent
In the situation where $\mathcal{Y}$ is representable by an algebraic
space and $\mathcal{X}$ is representable by an affine scheme, we choose
anew a surjective smooth morphism $\mathcal{V} \to \mathcal{Y}$ where
$\mathcal{V}$ is representable by an affine scheme. Going through the
argument above once again we once again reduce to the morphisms
$\mathcal{V}_p \to \mathcal{X}$. But in the current situation the algebraic
stacks $\mathcal{V}_p$ are representable by quasi-compact and quasi-separated
schemes (bacause the diagonal of an algebraic space is representable by
schemes).
\medskip\noindent
Thus we may assume $\mathcal{Y}$ is representable by a scheme and
$\mathcal{X}$ is representable by an affine scheme. Choose (again)
a surjective smooth morphism $\mathcal{V} \to \mathcal{Y}$ where
$\mathcal{V}$ is representable by an affine scheme. In this case all
the algebraic stacks $\mathcal{V}_p$ are representable by separated
schemes (because the diagonal of a scheme is separated).
\medskip\noindent
Thus we may assume $\mathcal{Y}$ is representable by a separated scheme and
$\mathcal{X}$ is representable by an affine scheme. Choose (yet again)
a surjective smooth morphism $\mathcal{V} \to \mathcal{Y}$ where
$\mathcal{V}$ is representable by an affine scheme. In this case all
the algebraic stacks $\mathcal{V}_p$ are representable by affine schemes
(because the diagonal of a separated scheme is a closed immersion hence affine)
and this case is handled by assumption (4).
This finishes the proof.
\end{proof}
\noindent
Here is the version for the fppf topology.
\begin{lemma}
\label{lemma-general-pushforward-fppf}
Let $\mathcal{M}$ be a rule which associates to every algebraic stack
$\mathcal{X}$ a subcategory $\mathcal{M}_\mathcal{X}$ of
$\textit{Mod}(\mathcal{O}_\mathcal{X})$
such that
\begin{enumerate}
\item $\mathcal{M}_\mathcal{X}$ is a weak Serre subcategory
of $\textit{Mod}(\mathcal{O}_\mathcal{X})$
for all algebraic stacks $\mathcal{X}$,
\item for a smooth morphism of algebraic stacks
$f : \mathcal{Y} \to \mathcal{X}$ the functor $f^*$ maps
$\mathcal{M}_\mathcal{X}$ into $\mathcal{M}_\mathcal{Y}$,
\item if $f_i : \mathcal{X}_i \to \mathcal{X}$ is a family of smooth
morphisms of algebraic stacks with
$|\mathcal{X}| = \bigcup |f_i|(|\mathcal{X}_i|)$, then an object
$\mathcal{F}$ of $\textit{Mod}(\mathcal{O}_\mathcal{X})$
is in $\mathcal{M}_\mathcal{X}$ if and only if
$f_i^*\mathcal{F}$ is in $\mathcal{M}_{\mathcal{X}_i}$ for all $i$, and
\item if $f : \mathcal{Y} \to \mathcal{X}$ is a morphism of algebraic
stacks and $\mathcal{X}$ and $\mathcal{Y}$ are representable
by affine schemes, then $R^if_*$ maps $\mathcal{M}_\mathcal{Y}$
into $\mathcal{M}_\mathcal{X}$.
\end{enumerate}
Then for any quasi-compact and quasi-separated morphism
$f : \mathcal{Y} \to \mathcal{X}$ of algebraic stacks
$R^if_*$ maps $\mathcal{M}_\mathcal{Y}$
into $\mathcal{M}_\mathcal{X}$. (Higher direct images computed in fppf
topology.)
\end{lemma}
\begin{proof}
Identical to the proof of Lemma \ref{lemma-general-pushforward}.
\end{proof}
\section{Locally quasi-coherent modules}
\label{section-locally-quasi-coherent}
\noindent
Let $\mathcal{X}$ be an algebraic stack. Let $\mathcal{F}$ be a presheaf
of $\mathcal{O}_\mathcal{X}$-modules. We can ask whether $\mathcal{F}$
is {\it locally quasi-coherent}, see
Sheaves on Stacks, Definition
\ref{stacks-sheaves-definition-locally-quasi-coherent}.
Briefly, this means $\mathcal{F}$ is an $\mathcal{O}_\mathcal{X}$-module
for the \'etale topology such that for any morphism $f : U \to \mathcal{X}$
the restriction $f^*\mathcal{F}|_{U_\etale}$ is quasi-coherent
on $U_\etale$. (The actual definition is slightly different, but
equivalent.) A useful fact is that
$$
\textit{LQCoh}(\mathcal{O}_\mathcal{X}) \subset
\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})
$$
is a weak Serre subcategory, see
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-lqc-colimits}.
\begin{lemma}
\label{lemma-check-lqc-on-etale-covering}
Let $\mathcal{X}$ be an algebraic stack. Let
$f_j : \mathcal{X}_j \to \mathcal{X}$ be a family of smooth
morphisms of algebraic stacks with
$|\mathcal{X}| =\bigcup |f_j|(|\mathcal{X}_j|)$.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_\mathcal{X}$-modules
on $\mathcal{X}_\etale$. If each $f_j^{-1}\mathcal{F}$
is locally quasi-coherent, then so is $\mathcal{F}$.
\end{lemma}
\begin{proof}
We may replace each of the algebraic stacks $\mathcal{X}_j$ by
a scheme $U_j$ (using that any algebraic stack has a smooth covering by
a scheme and that compositions of smooth morphisms are smooth, see
Morphisms of Stacks, Lemma \ref{stacks-morphisms-lemma-composition-smooth}).
The pullback of $\mathcal{F}$ to $(\Sch/U_j)_\etale$ is still
locally quasi-coherent, see
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-pullback-lqc}.
Then $f = \coprod f_j : U = \coprod U_j \to \mathcal{X}$ is a surjective
smooth morphism. Let $x$ be an object of $\mathcal{X}$. By
Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-surjective-flat-locally-finite-presentation}
there exists an \'etale covering $\{x_i \to x\}_{i \in I}$
such that each $x_i$ lifts to an object $u_i$ of $(\Sch/U)_\etale$.
This just means that $x$, $x_i$ live over schemes $V$, $V_i$, that
$\{V_i \to V\}$ is an \'etale covering, and that $x_i$ comes from
a morphism $u_i : V_i \to U$. The restriction
$x_i^*\mathcal{F}|_{V_{i, \etale}}$ is equal to the restriction
of $f^*\mathcal{F}$ to $V_{i, \etale}$, see
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-comparison}.
Hence $x^*\mathcal{F}|_{V_\etale}$
is a sheaf on the small \'etale site of $V$ which is quasi-coherent
when restricted to $V_{i, \etale}$ for each $i$.
This implies that it is quasi-coherent (as desired), for example by
Properties of Spaces, Lemma
\ref{spaces-properties-lemma-characterize-quasi-coherent}.
\end{proof}
\begin{lemma}
\label{lemma-pushforward-locally-quasi-coherent}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a quasi-compact and
quasi-separated morphism of algebraic stacks. Let
$\mathcal{F}$ be a locally quasi-coherent
$\mathcal{O}_\mathcal{X}$-module on $\mathcal{X}_\etale$.
Then $R^if_*\mathcal{F}$ (computed in the \'etale topology) is
a locally quasi-coherent on $\mathcal{Y}_\etale$.
\end{lemma}
\begin{proof}
We will use
Lemma \ref{lemma-general-pushforward}
to prove this. We will check its assumptions (1) -- (4).
Parts (1) and (2) follows from
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-lqc-colimits}.
Part (3) follows from
Lemma \ref{lemma-check-lqc-on-etale-covering}.
Thus it suffices to show (4).
\medskip\noindent
Suppose $f : \mathcal{X} \to \mathcal{Y}$ is a morphism of algebraic stacks
such that $\mathcal{X}$ and $\mathcal{Y}$ are representable by affine
schemes $X$ and $Y$. Choose any object $y$ of $\mathcal{Y}$ lying over a
scheme $V$. For clarity, denote $\mathcal{V} = (\Sch/V)_{fppf}$ the
algebraic stack corresponding to $V$. Consider the cartesian diagram
$$
\xymatrix{
\mathcal{Z} \ar[d] \ar[r]_g \ar[d]_{f'} & \mathcal{X} \ar[d]^f \\
\mathcal{V} \ar[r]^y & \mathcal{Y}
}
$$
Thus $\mathcal{Z}$ is representable by the scheme $Z = V \times_Y X$
and $f'$ is quasi-compact and separated (even affine). By
Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-compare-representable-morphism-cohomology}
we have
$$
R^if_*\mathcal{F}|_{V_\etale} =
R^if'_{small, *}\big(g^*\mathcal{F}|_{Z_\etale}\big)
$$
The right hand side is a quasi-coherent sheaf on $V_\etale$ by
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-higher-direct-image}.
This implies the left hand side is quasi-coherent which is what
we had to prove.
\end{proof}
\begin{lemma}
\label{lemma-check-lqc-on-flat-covering}
Let $\mathcal{X}$ be an algebraic stack. Let
$f_j : \mathcal{X}_j \to \mathcal{X}$ be a family of flat
and locally finitely presented morphisms of algebraic stacks with
$|\mathcal{X}| =\bigcup |f_j|(|\mathcal{X}_j|)$.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_\mathcal{X}$-modules
on $\mathcal{X}_{fppf}$. If each $f_j^{-1}\mathcal{F}$
is locally quasi-coherent, then so is $\mathcal{F}$.
\end{lemma}
\begin{proof}
First, suppose there is a morphism $a : \mathcal{U} \to \mathcal{X}$
which is surjective, flat, locally of finite presentation, quasi-compact,
and quasi-separated such that $a^*\mathcal{F}$ is locally quasi-coherent.
Then there is an exact sequence
$$
0 \to \mathcal{F} \to a_*a^*\mathcal{F} \to b_*b^*\mathcal{F}
$$
where $b$ is the morphism
$b : \mathcal{U} \times_\mathcal{X} \mathcal{U} \to \mathcal{X}$, see
Sheaves on Stacks, Proposition
\ref{stacks-sheaves-proposition-exactness-cech-complex} and
Lemma \ref{stacks-sheaves-lemma-surjective-flat-locally-finite-presentation}.
Moreover, the pullback $b^*\mathcal{F}$ is the pullback of $a^*\mathcal{F}$
via one of the projection morphisms, hence is locally quasi-coherent
(Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-pullback-lqc}).
The modules $a_*a^*\mathcal{F}$ and $b_*b^*\mathcal{F}$ are locally
quasi-coherent by Lemma \ref{lemma-pushforward-locally-quasi-coherent}.
(Note that $a_*$ and $b_*$ don't care about which topology is
used to calculate them.)
We conclude that $\mathcal{F}$ is locally quasi-coherent, see
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-lqc-colimits}.
\medskip\noindent
We are going to reduce the proof of the general case the the
situation in the first paragraph. Let $x$ be an object of $\mathcal{X}$
lying over the scheme $U$. We have to show that
$\mathcal{F}|_{U_\etale}$ is a quasi-coherent $\mathcal{O}_U$-module.
It suffices to do this (Zariski) locally on $U$, hence we may
assume that $U$ is affine. By
Morphisms of Stacks, Lemma
\ref{stacks-morphisms-lemma-surjective-family-flat-locally-finite-presentation}
there exists an fppf covering $\{a_i : U_i \to U\}$ such that
each $x \circ a_i$ factors through some $f_j$. Hence $a_i^*\mathcal{F}$
is locally quasi-coherent on $(\Sch/U_i)_{fppf}$. After refining
the covering we may assume $\{U_i \to U\}_{i = 1, \ldots, n}$
is a standard fppf covering. Then $x^*\mathcal{F}$ is an fppf
module on $(\Sch/U)_{fppf}$ whose pullback by the morphism
$a : U_1 \amalg \ldots \amalg U_n \to U$ is locally quasi-coherent.
Hence by the first paragraph we see that $x^*\mathcal{F}$ is locally
quasi-coherent, which certainly implies that $\mathcal{F}|_{U_\etale}$
is quasi-coherent.
\end{proof}
\section{Flat comparison maps}
\label{section-flat-comparison}
\noindent
Let $\mathcal{X}$ be an algebraic stack and let $\mathcal{F}$ be an object
of $\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$.
Given an object $x$ of $\mathcal{X}$ lying over the scheme $U$ the
restriction $\mathcal{F}|_{U_\etale}$ is the restriction of
$x^{-1}\mathcal{F}$ to the small \'etale site of $U$, see
Sheaves on Stacks, Definition \ref{stacks-sheaves-definition-pullback}.
Next, let $\varphi : x \to x'$ be a morphism of $\mathcal{X}$ lying
over a morphism of schemes $f : U \to U'$. Thus a $2$-commutative diagram
$$
\xymatrix{
U \ar[rd]_x \ar[rr]_f & & U' \ar[ld]^{x'} \\
& \mathcal{X}
}
$$
Associated to $\varphi$ we obtain a comparison map between restrictions
\begin{equation}
\label{equation-comparison-modules}
c_\varphi :
f_{small}^*(\mathcal{F}|_{U'_\etale})
\longrightarrow
\mathcal{F}|_{U_\etale}
\end{equation}
see Sheaves on Stacks, Equation
(\ref{stacks-sheaves-equation-comparison-modules}).
In this situation we can consider the following property
of $\mathcal{F}$.
\begin{definition}
\label{definition-flat-base-change}
Let $\mathcal{X}$ be an algebraic stack and let $\mathcal{F}$ in
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$.
We say $\mathcal{F}$ has the {\it flat base change property}\footnote{This
may be nonstandard notation.}
if and only if $c_\varphi$ is an isomorphism whenever $f$ is flat.
\end{definition}
\noindent
Here is a lemma with some properties of this notion.
\begin{lemma}
\label{lemma-check-flat-comparison-on-etale-covering}
Let $\mathcal{X}$ be an algebraic stack. Let $\mathcal{F}$
be an $\mathcal{O}_\mathcal{X}$-module on $\mathcal{X}_\etale$.
\begin{enumerate}
\item If $\mathcal{F}$ has the flat base change property then for any morphism
$g : \mathcal{Y} \to \mathcal{X}$ of algebraic stacks, the
pullback $g^*\mathcal{F}$ does too.
\item The full subcategory of
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
consisting of modules with the flat base change property
is a weak Serre subcategory.
\item Let $f_i : \mathcal{X}_i \to \mathcal{X}$ be a family of
smooth morphisms of algebraic stacks such that
$|\mathcal{X}| = \bigcup_i |f_i|(|\mathcal{X}_i|)$. If each
$f_i^*\mathcal{F}$ has the flat base change property then so does
$\mathcal{F}$.
\item The category of $\mathcal{O}_\mathcal{X}$-modules
on $\mathcal{X}_\etale$ with the flat base change property
has colimits and they agree with colimits in
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $g : \mathcal{Y} \to \mathcal{X}$ be as in (1).
Let $y$ be an object of $\mathcal{Y}$ lying over a scheme $V$. By
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-comparison}
we have
$(g^*\mathcal{F})|_{V_\etale} = \mathcal{F}|_{V_\etale}$.
Moreover a comparison mapping for the sheaf $g^*\mathcal{F}$ on $\mathcal{Y}$
is a special case of a comparison map for the sheaf $\mathcal{F}$ on
$\mathcal{X}$, see
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-comparison}.
In this way (1) is clear.
\medskip\noindent
Proof of (2). We use the characterization of weak Serre subcategories of
Homology, Lemma \ref{homology-lemma-characterize-weak-serre-subcategory}.
Kernels and cokernels of
maps between sheaves having the flat base change property
also have the flat base change property. This is clear because
$f_{small}^*$ is exact for a flat morphism of schemes and since the
restriction functors $(-)|_{U_\etale}$ are exact (because we
are working in the \'etale topology). Finally, if
$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$
is a short exact sequence of
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
and the outer two sheaves have the flat base change property then
the middle one does as well, again because of the exactness of
$f_{small}^*$ and the restriction functors (and the 5 lemma).
\medskip\noindent
Proof of (3).
Let $f_i : \mathcal{X}_i \to \mathcal{X}$ be a jointly surjective family of
smooth morphisms of algebraic stacks and assume each $f_i^*\mathcal{F}$
has the flat base change property. By part (1), the definition of
an algebraic stack, and the fact that compositions of smooth morphisms
are smooth (see
Morphisms of Stacks, Lemma \ref{stacks-morphisms-lemma-composition-smooth})
we may assume that each $\mathcal{X}_i$ is representable by a scheme.
Let $\varphi : x \to x'$ be a morphism of $\mathcal{X}$ lying over
a flat morphism $a : U \to U'$ of schemes. By
Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-surjective-flat-locally-finite-presentation}
there exists a jointly surjective family of \'etale morphisms
$U'_i \to U'$ such that $U' \to U' \to \mathcal{X}$ factors through
$\mathcal{X}_i$. Thus we obtain commutative diagrams
$$
\xymatrix{
U_i = U \times_{U'} U_i' \ar[r]_-{a_i} \ar[d] &
U_i' \ar[r]_{x_i'} \ar[d] & \mathcal{X}_i \ar[d]^{f_i} \\
U \ar[r]^a & U' \ar[r]^{x'} & \mathcal{X}
}
$$
Note that each $a_i$ is a flat morphism of schemes as a base change of $a$.
Denote $\psi_i : x_i \to x'_i$ the morphism of $\mathcal{X}_i$ lying over
$a_i$ with target $x_i'$. By assumption the comparison maps
$c_{\psi_i} :
(a_i)_{small}^*\big(f_i^*\mathcal{F}|_{(U'_i)_\etale}\big)
\to f_i^*\mathcal{F}|_{(U_i)_\etale}$ is an isomorphism.
Because the vertical arrows $U_i' \to U'$ and $U_i \to U$ are \'etale,
the sheaves $f_i^*\mathcal{F}|_{(U_i')_\etale}$ and
$f_i^*\mathcal{F}|_{(U_i)_\etale}$ are the restrictions of
$\mathcal{F}|_{U'_\etale}$ and $\mathcal{F}|_{U_\etale}$
and the map $c_{\psi_i}$ is the restriction of $c_\varphi$ to
$(U_i)_\etale$, see
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-comparison}.
Since $\{U_i \to U\}$ is an \'etale covering, this implies
that the comparison map $c_\varphi$ is an isomorphism which is what
we wanted to prove.
\medskip\noindent
Proof of (4). Let
$\mathcal{I} \to
\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$,
$i \mapsto \mathcal{F}_i$ be a diagram and assume each $\mathcal{F}_i$
has the flat base change property. Recall that $\colim_i \mathcal{F}_i$
is the sheafification of the presheaf colimit. As we are using the
\'etale topology, it is clear that
$$
(\colim_i \mathcal{F}_i)|_{U_\etale} =
\colim_i {\mathcal{F}_i}|_{U_\etale}
$$
As $f_{small}^*$ commutes with colimits (as a left adjoint)
we see that (4) holds.
\end{proof}
\begin{lemma}
\label{lemma-flat-comparison}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a quasi-compact and
quasi-separated morphism of algebraic stacks. Let
$\mathcal{F}$ be an object of
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
which is locally quasi-coherent and has the flat base change property.
Then each $R^ig_*\mathcal{F}$ (computed in the \'etale topology)
has the flat base change property.
\end{lemma}
\begin{proof}
We will use
Lemma \ref{lemma-general-pushforward}
to prove this. For every algebraic stack $\mathcal{X}$ let
$\mathcal{M}_\mathcal{X}$ denote the full subcategory of
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
consisting of locally quasi-coherent sheaves with the flat base
change property. Once we verify conditions (1) -- (4) of
Lemma \ref{lemma-general-pushforward}
the lemma will follow. Properties (1), (2), and (3) follow from
Sheaves on Stacks, Lemmas \ref{stacks-sheaves-lemma-pullback-lqc} and
\ref{stacks-sheaves-lemma-lqc-colimits}
and
Lemmas \ref{lemma-check-lqc-on-etale-covering} and
\ref{lemma-check-flat-comparison-on-etale-covering}.
Thus it suffices to show part (4).
\medskip\noindent
Suppose $f : \mathcal{X} \to \mathcal{Y}$ is a morphism of algebraic stacks
such that $\mathcal{X}$ and $\mathcal{Y}$ are representable by affine
schemes $X$ and $Y$. In this case, suppose that
$\psi : y \to y'$ is a morphism of $\mathcal{Y}$ lying over
a flat morphism $b : V \to V'$ of schemes. For clarity denote
$\mathcal{V} = (\Sch/V)_{fppf}$ and $\mathcal{V}' = (\Sch/V')_{fppf}$
the corresponding algebraic stacks. Consider the diagram
of algebraic stacks
$$
\xymatrix{
\mathcal{Z} \ar[d]_{f''} \ar[r]_a &
\mathcal{Z}' \ar[r]_{x'} \ar[d]_{f'} & \mathcal{X} \ar[d]^f \\
\mathcal{V} \ar[r]^b & \mathcal{V}' \ar[r]^{y'} & \mathcal{Y}
}
$$
with both squares cartesian. As $f$ is representable by schemes
(and quasi-compact and separated -- even affine) we see that $\mathcal{Z}$ and
$\mathcal{Z}'$ are representable by schemes $Z$ and $Z'$ and in
fact $Z = V \times_{V'} Z'$. Since $\mathcal{F}$ has the flat
base change property we see that
$$
a_{small}^*\big(\mathcal{F}|_{Z'_\etale}\big)
\longrightarrow
\mathcal{F}|_{Z_\etale}
$$
is an isomorphism. Moreover,
$$
R^if_*\mathcal{F}|_{V'_\etale} =
R^i(f')_{small, *}\big(\mathcal{F}|_{Z'_\etale}\big)
$$
and
$$
R^if_*\mathcal{F}|_{V_\etale} =
R^i(f'')_{small, *}\big(\mathcal{F}|_{Z_\etale}\big)
$$
by
Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-compare-representable-morphism-cohomology}.
Hence we see that the comparison map
$$
c_\psi :
b_{small}^*(R^if_*\mathcal{F}|_{V'_\etale})
\longrightarrow
R^if_*\mathcal{F}|_{V_\etale}
$$
is an isomorphism by
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-flat-base-change-cohomology}.
Thus $R^if_*\mathcal{F}$ has the flat base change property.
Since $R^if_*\mathcal{F}$ is locally quasi-coherent by
Lemma \ref{lemma-pushforward-locally-quasi-coherent}
we win.
\end{proof}
\begin{proposition}
\label{proposition-lcq-flat-base-change}
Summary of results on locally quasi-coherent modules having the flat
base change property.
\begin{enumerate}
\item Let $\mathcal{X}$ be an algebraic stack.
If $\mathcal{F}$ is an object of
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
which is locally quasi-coherent and has the flat base change property,
then $\mathcal{F}$ is a sheaf for the fppf topology, i.e., it is
an object of $\textit{Mod}(\mathcal{O}_\mathcal{X})$.
\item The category of modules which are locally quasi-coherent
and have the flat base change property is a weak Serre subcategory
$\mathcal{M}_\mathcal{X}$ of both $\textit{Mod}(\mathcal{O}_\mathcal{X})$
and $\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$.
\item Pullback $f^*$ along any morphism of algebraic stacks
$f : \mathcal{X} \to \mathcal{Y}$ induces a functor
$f^* : \mathcal{M}_\mathcal{Y} \to \mathcal{M}_\mathcal{X}$.
\item If $f : \mathcal{X} \to \mathcal{Y}$ is a
quasi-compact and quasi-separated morphism of algebraic stacks
and $\mathcal{F}$ is an object of $\mathcal{M}_\mathcal{X}$, then
\begin{enumerate}
\item the derived direct image $Rf_*\mathcal{F}$ and the higher direct
images $R^if_*\mathcal{F}$ can be computed in either the \'etale or the
fppf topology with the same result, and
\item each $R^if_*\mathcal{F}$ is an object of $\mathcal{M}_\mathcal{Y}$.
\end{enumerate}
\item The category $\mathcal{M}_\mathcal{X}$ has colimits and they agree
with colimits in
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
as well as in $\textit{Mod}(\mathcal{O}_\mathcal{X})$.
\end{enumerate}
\end{proposition}
\begin{proof}
Part (1) is
Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-lqc-flat-base-change-fppf-sheaf}.
\medskip\noindent
Part (2) for the embedding $\mathcal{M}_\mathcal{X} \subset
\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
we have seen in the proof of
Lemma \ref{lemma-flat-comparison}.
Let us prove (2) for the embedding
$\mathcal{M}_\mathcal{X} \subset \textit{Mod}(\mathcal{O}_\mathcal{X})$.
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism between
objects of $\mathcal{M}_\mathcal{X}$. Since $\Ker(\varphi)$
is the same whether computed in the \'etale or the fppf
topology, we see that $\Ker(\varphi)$ is in
$\mathcal{M}_\mathcal{X}$ by the \'etale case. On the other hand,
the cokernel computed in the fppf topology is the fppf sheafification
of the cokernel computed in the \'etale topology. However, this
\'etale cokernel is in $\mathcal{M}_\mathcal{X}$ hence an fppf sheaf
by (1) and we see that the cokernel is in $\mathcal{M}_\mathcal{X}$.
Finally, suppose that
$$
0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0
$$
is an exact sequence in $\textit{Mod}(\mathcal{O}_\mathcal{X})$
(i.e., using the fppf topology) with $\mathcal{F}_1$, $\mathcal{F}_2$
in $\mathcal{M}_\mathcal{X}$. In order to show that $\mathcal{F}_2$
is an object of $\mathcal{M}_\mathcal{X}$ it suffices to show that
the sequence is also exact in the \'etale topology. To do this it
suffices to show that any element of $H^1_{fppf}(x, \mathcal{F}_1)$
becomes zero on the members of an \'etale covering of $x$ (for any
object $x$ of $\mathcal{X}$). This is true because
$H^1_{fppf}(x, \mathcal{F}_1) = H^1_\etale(x, \mathcal{F}_1)$ by
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-compare-fppf-etale}
and because of locality of cohomology, see
Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-kill-cohomology-class-on-covering}.
This proves (2).
\medskip\noindent
Part (3) follows from
Lemma \ref{lemma-check-flat-comparison-on-etale-covering}
and
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-pullback-lqc}.
\medskip\noindent
Part (4)(b) for $R^if_*\mathcal{F}$ computed in the \'etale cohomology
follows from Lemma \ref{lemma-flat-comparison}.
Whereupon part (4)(a) follows from
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-compare-fppf-etale}
combined with (1) above.
\medskip\noindent
Part (5) for the \'etale topology follows from
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-lqc-colimits} and
Lemma \ref{lemma-check-flat-comparison-on-etale-covering}.
The fppf version then follows as the colimit in the \'etale
topology is already an fppf sheaf by part (1).
\end{proof}
\begin{lemma}
\label{lemma-check-lqc-fbc-on-covering}
Let $\mathcal{X}$ be an algebraic stack. With $\mathcal{M}_\mathcal{X}$
the category of locally quasi-coherent modules with the flat base change
property.
\begin{enumerate}
\item Let $f_j : \mathcal{X}_j \to \mathcal{X}$ be a family of smooth
morphisms of algebraic stacks with
$|\mathcal{X}| =\bigcup |f_j|(|\mathcal{X}_j|)$.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_\mathcal{X}$-modules
on $\mathcal{X}_\etale$. If each $f_j^{-1}\mathcal{F}$
is in $\mathcal{M}_{\mathcal{X}_i}$, then $\mathcal{F}$ is in
$\mathcal{M}_\mathcal{X}$.
\item Let $f_j : \mathcal{X}_j \to \mathcal{X}$ be a family of flat
and locally finitely presented morphisms of algebraic stacks with
$|\mathcal{X}| =\bigcup |f_j|(|\mathcal{X}_j|)$.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_\mathcal{X}$-modules
on $\mathcal{X}_{fppf}$. If each $f_j^{-1}\mathcal{F}$
is in $\mathcal{M}_{\mathcal{X}_i}$, then $\mathcal{F}$ is in
$\mathcal{M}_\mathcal{X}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) follows from a combination of
Lemmas \ref{lemma-check-lqc-on-etale-covering} and
\ref{lemma-check-flat-comparison-on-etale-covering}.
The proof of (2) is analogous to the proof of
Lemma \ref{lemma-check-lqc-on-flat-covering}.
Let $\mathcal{F}$ of a sheaf of $\mathcal{O}_\mathcal{X}$-modules
on $\mathcal{X}_{fppf}$.
\medskip\noindent
First, suppose there is a morphism $a : \mathcal{U} \to \mathcal{X}$
which is surjective, flat, locally of finite presentation, quasi-compact,
and quasi-separated such that $a^*\mathcal{F}$ is locally quasi-coherent
and has the flat base change property.
Then there is an exact sequence
$$
0 \to \mathcal{F} \to a_*a^*\mathcal{F} \to b_*b^*\mathcal{F}
$$
where $b$ is the morphism
$b : \mathcal{U} \times_\mathcal{X} \mathcal{U} \to \mathcal{X}$, see
Sheaves on Stacks, Proposition
\ref{stacks-sheaves-proposition-exactness-cech-complex} and
Lemma \ref{stacks-sheaves-lemma-surjective-flat-locally-finite-presentation}.
Moreover, the pullback $b^*\mathcal{F}$ is the pullback of $a^*\mathcal{F}$
via one of the projection morphisms, hence is locally quasi-coherent
and has the flat base change property, see
Proposition \ref{proposition-lcq-flat-base-change}.
The modules $a_*a^*\mathcal{F}$ and $b_*b^*\mathcal{F}$ are locally
quasi-coherent and have the flat base change property by
Proposition \ref{proposition-lcq-flat-base-change}.
We conclude that $\mathcal{F}$ is locally quasi-coherent and
has the flat base change property by
Proposition \ref{proposition-lcq-flat-base-change}.
\medskip\noindent
Choose a scheme $U$ and a surjective smooth morphism $x : U \to \mathcal{X}$.
By part (1) it suffices to show that $x^*\mathcal{F}$ is locally
quasi-coherent and has the flat base change property.
Again by part (1) it suffices to do this (Zariski) locally on $U$,
hence we may assume that $U$ is affine. By
Morphisms of Stacks, Lemma
\ref{stacks-morphisms-lemma-surjective-family-flat-locally-finite-presentation}
there exists an fppf covering $\{a_i : U_i \to U\}$ such that
each $x \circ a_i$ factors through some $f_j$. Hence the module
$a_i^*\mathcal{F}$ on $(\Sch/U_i)_{fppf}$
is locally quasi-coherent and has the flat base change property.
After refining the covering we may assume $\{U_i \to U\}_{i = 1, \ldots, n}$
is a standard fppf covering. Then $x^*\mathcal{F}$ is an fppf
module on $(\Sch/U)_{fppf}$ whose pullback by the morphism
$a : U_1 \amalg \ldots \amalg U_n \to U$ is locally quasi-coherent
and has the flat base change property.
Hence by the previous paragraph we see that $x^*\mathcal{F}$ is locally
quasi-coherent and has the flat base change property as desired.
\end{proof}
\section{Parasitic modules}
\label{section-parasitic}
\noindent
The following definition is compatible with
Descent, Definition \ref{descent-definition-parasitic}.
\begin{definition}
\label{definition-parasitic}
Let $\mathcal{X}$ be an algebraic stack.
A presheaf of $\mathcal{O}_\mathcal{X}$-modules $\mathcal{F}$ is
{\it parasitic} if we have $\mathcal{F}(x) = 0$ for any object $x$
of $\mathcal{X}$ which lies over a scheme $U$ such that the corresponding
morphism $x : U \to \mathcal{X}$ is flat.
\end{definition}
\noindent
Here is a lemma with some properties of this notion.
\begin{lemma}
\label{lemma-parasitic}
Let $\mathcal{X}$ be an algebraic stack. Let $\mathcal{F}$
be a presheaf of $\mathcal{O}_\mathcal{X}$-modules.
\begin{enumerate}
\item If $\mathcal{F}$ is parasitic and
$g : \mathcal{Y} \to \mathcal{X}$ is a flat morphism of algebraic stacks,
then $g^*\mathcal{F}$ is parasitic.
\item For $\tau \in \{Zariski, \etale, smooth, syntomic, fppf\}$
we have
\begin{enumerate}
\item the $\tau$ sheafification of a parasitic presheaf of modules is
parasitic, and
\item the full subcategory of
$\textit{Mod}(\mathcal{X}_\tau, \mathcal{O}_\mathcal{X})$
consisting of parasitic modules is a Serre subcategory.
\end{enumerate}
\item Suppose $\mathcal{F}$ is a sheaf for the \'etale topology.
Let $f_i : \mathcal{X}_i \to \mathcal{X}$ be a family of
smooth morphisms of algebraic stacks such that
$|\mathcal{X}| = \bigcup_i |f_i|(|\mathcal{X}_i|)$. If each
$f_i^*\mathcal{F}$ is parasitic then so is $\mathcal{F}$.
\item Suppose $\mathcal{F}$ is a sheaf for the fppf topology.
Let $f_i : \mathcal{X}_i \to \mathcal{X}$ be a family of
flat and locally finitely presented morphisms of algebraic stacks such that
$|\mathcal{X}| = \bigcup_i |f_i|(|\mathcal{X}_i|)$. If each
$f_i^*\mathcal{F}$ is parasitic then so is $\mathcal{F}$.
\end{enumerate}
\end{lemma}
\begin{proof}
To see part (1) let $y$ be an object of $\mathcal{Y}$ which lies
over a scheme $V$ such that the corresponding morphism $y : V \to \mathcal{Y}$
is flat. Then $g(y) : V \to \mathcal{Y} \to \mathcal{X}$ is flat
as a composition of flat morphisms (see
Morphisms of Stacks, Lemma \ref{stacks-morphisms-lemma-composition-flat})
hence $\mathcal{F}(g(y))$ is zero by assumption. Since
$g^*\mathcal{F} = g^{-1}\mathcal{F}(y) = \mathcal{F}(g(y))$ we conclude
$g^*\mathcal{F}$ is parasitic.
\medskip\noindent
To see part (2)(a) note that if $\{x_i \to x\}$ is a $\tau$-covering
of $\mathcal{X}$, then each of the morphisms $x_i \to x$ lies
over a flat morphism of schemes. Hence if $x$ lies over a scheme
$U$ such that $x : U \to \mathcal{X}$ is flat, so do all of the
objects $x_i$. Hence the presheaf $\mathcal{F}^+$ (see
Sites, Section \ref{sites-section-sheafification})
is parasitic if the presheaf $\mathcal{F}$ is
parasitic. This proves (2)(a) as the sheafification of $\mathcal{F}$
is $(\mathcal{F}^+)^+$.
\medskip\noindent
Let $\mathcal{F}$ be a parasitic $\tau$-module. It is immediate from the