forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spaces.tex
2833 lines (2455 loc) · 102 KB
/
spaces.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Algebraic Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
Algebraic spaces were first introduced by Michael Artin,
see \cite{ArtinI}, \cite{ArtinII},
\cite{Artin-Theorem-Representability},
\cite{Artin-Construction-Techniques},
\cite{Artin-Algebraic-Spaces},
\cite{Artin-Algebraic-Approximation},
\cite{Artin-Implicit-Function},
and \cite{ArtinVersal}.
Some of the foundational material was developed jointly with
Knutson, who produced the book \cite{Kn}.
Artin defined (see \cite[Definition 1.3]{Artin-Implicit-Function})
an algebraic space as a sheaf for the \'etale topology
which is locally in the \'etale topology representable.
In most of Artin's work the categories of schemes
considered are schemes locally of finite type over a fixed
excellent Noetherian base.
\medskip\noindent
Our definition is slightly different. First of all we consider sheaves
for the fppf topology. This is just a technical point and scarcely makes
any difference. Second, we include the condition that the diagonal is
representable.
\medskip\noindent
After defining algebraic spaces we make some foundational observations.
The main result in this chapter is that with our definitions
an algebraic space is the same thing as an \'etale equivalence relation,
see the discussion in Section \ref{section-presentations} and
Theorem \ref{theorem-presentation}. The analogue of this theorem in
Artin's setting is \cite[Theorem 1.5]{Artin-Implicit-Function}, or
\cite[Proposition II.1.7]{Kn}. In other words, the sheaf
defined by an \'etale equivalence relation has a representable diagonal.
It follows that our definition agrees with Artin's original definition
in a broad sense. It also means that one can give examples of algebraic
spaces by simply writing down an \'etale equivalence relation.
\medskip\noindent
In Section \ref{section-separation} we introduce various separation
axioms on algebraic spaces that we have found in the literature.
Finally in Section \ref{section-examples}
we give some weird and not so weird examples of algebraic spaces.
\section{General remarks}
\label{section-general}
\noindent
We work in a suitable big fppf site $\Sch_{fppf}$
as in Topologies, Definition \ref{topologies-definition-big-fppf-site}.
So, if not explicitly stated otherwise all schemes will be objects
of $\Sch_{fppf}$.
We will record elsewhere what changes if you change the big
fppf site (insert future reference here).
\medskip\noindent
We will always work relative to a base $S$ contained in $\Sch_{fppf}$.
And we will then work with the big fppf site $(\Sch/S)_{fppf}$,
see Topologies, Definition \ref{topologies-definition-big-small-fppf}.
The absolute case can be recovered by taking
$S = \Spec(\mathbf{Z})$.
\medskip\noindent
If $U, T$ are schemes over $S$, then we denote
$U(T)$ for the set of $T$-valued points {\it over} $S$.
In a formula: $U(T) = \Mor_S(T, U)$.
\medskip\noindent
Note that any fpqc covering is a universal effective epimorphism, see
Descent, Lemma \ref{descent-lemma-fpqc-universal-effective-epimorphisms}.
Hence the topology on $\Sch_{fppf}$
is weaker than the canonical topology and all representable presheaves
are sheaves.
\section{Representable morphisms of presheaves}
\label{section-representable}
\noindent
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $a : F \to G$ be a representable transformation of functors, see
Categories,
Definition \ref{categories-definition-representable-map-presheaves}.
This means that for every
$U \in \Ob((\Sch/S)_{fppf})$ and
any $\xi \in G(U)$ the fiber product $h_U \times_{\xi, G} F$ is representable.
Choose a representing object $V_\xi$ and an isomorphism
$h_{V_\xi} \to h_U \times_G F$.
By the Yoneda lemma, see Categories, Lemma \ref{categories-lemma-yoneda},
the projection $h_{V_\xi} \to h_U \times_G F \to h_U$ comes from a unique
morphism of schemes $a_\xi : V_\xi \to U$.
Suggestively we could represent this by the diagram
$$
\xymatrix{
V_\xi \ar@{~>}[r] \ar[d]_{a_\xi} & h_{V_\xi} \ar[d] \ar[r] & F \ar[d]^a \\
U \ar@{~>}[r] & h_U \ar[r]^\xi & G
}
$$
where the squiggly arrows represent the Yoneda embedding.
Here are some lemmas about this notion that work in great generality.
\begin{lemma}
\label{lemma-morphism-schemes-gives-representable-transformation}
Let $S$, $X$, $Y$ be objects of $\Sch_{fppf}$.
Let $f : X \to Y$ be a morphism of schemes.
Then
$$
h_f : h_X \longrightarrow h_Y
$$
is a representable transformation of functors.
\end{lemma}
\begin{proof}
This is formal and relies only on the fact that
the category $(\Sch/S)_{fppf}$ has fibre products.
\end{proof}
\begin{lemma}
\label{lemma-composition-representable-transformations}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G, H : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $a : F \to G$, $b : G \to H$ be representable transformations of functors.
Then
$$
b \circ a : F \longrightarrow H
$$
is a representable transformation of functors.
\end{lemma}
\begin{proof}
This is entirely formal and works in any category.
\end{proof}
\begin{lemma}
\label{lemma-base-change-representable-transformations}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G, H : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $a : F \to G$ be a representable transformations of functors.
Let $b : H \to G$ be any transformation of functors.
Consider the fibre product diagram
$$
\xymatrix{
H \times_{b, G, a} F \ar[r]_-{b'} \ar[d]_{a'} & F \ar[d]^a \\
H \ar[r]^b & G
}
$$
Then the base change $a'$ is a representable transformation of functors.
\end{lemma}
\begin{proof}
This is entirely formal and works in any category.
\end{proof}
\begin{lemma}
\label{lemma-product-representable-transformations}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F_i, G_i : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$, $i = 1, 2$.
Let $a_i : F_i \to G_i$, $i = 1, 2$
be representable transformations of functors.
Then
$$
a_1 \times a_2 : F_1 \times F_2 \longrightarrow G_1 \times G_2
$$
is a representable transformation of functors.
\end{lemma}
\begin{proof}
Write $a_1 \times a_2$ as the composition
$F_1 \times F_2 \to G_1 \times F_2 \to G_1 \times G_2$.
The first arrow is the base change of $a_1$ by the map
$G_1 \times F_2 \to G_1$, and the second arrow
is the base change of $a_2$ by the map
$G_1 \times G_2 \to G_2$. Hence this lemma is a formal
consequence of Lemmas \ref{lemma-composition-representable-transformations}
and \ref{lemma-base-change-representable-transformations}.
\end{proof}
\begin{lemma}
\label{lemma-representable-transformation-to-sheaf}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $a : F \to G$ be a representable transformation of functors.
If $G$ is a sheaf, then so is $F$.
\end{lemma}
\begin{proof}
Let $\{\varphi_i : T_i \to T\}$ be a covering of the site
$(\Sch/S)_{fppf}$.
Let $s_i \in F(T_i)$ which satisfy the sheaf condition.
Then $\sigma_i = a(s_i) \in G(T_i)$ satisfy the sheaf condition
also. Hence there exists a unique $\sigma \in G(T)$ such
that $\sigma_i = \sigma|_{T_i}$. By assumption
$F' = h_T \times_{\sigma, G, a} F$ is a representable presheaf
and hence (see remarks in Section \ref{section-general}) a sheaf.
Note that $(\varphi_i, s_i) \in F'(T_i)$ satisfy the
sheaf condition also, and hence come from some unique
$(\text{id}_T, s) \in F'(T)$. Clearly $s$ is the section of
$F$ we are looking for.
\end{proof}
\begin{lemma}
\label{lemma-representable-transformation-diagonal}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $a : F \to G$ be a representable transformation of functors.
Then $\Delta_{F/G} : F \to F \times_G F$ is representable.
\end{lemma}
\begin{proof}
Let $U \in \Ob((\Sch/S)_{fppf})$. Let
$\xi = (\xi_1, \xi_2) \in (F \times_G F)(U)$.
Set $\xi' = a(\xi_1) = a(\xi_2) \in G(U)$.
By assumption there exist a scheme $V$ and a morphism $V \to U$
representing the fibre product $h_U \times_{\xi', G} F$.
In particular, the elements $\xi_1, \xi_2$ give morphisms
$f_1, f_2 : U \to V$ over $U$. Because $V$ represents the
fibre product $h_U \times_{\xi', G} F$ and because
$\xi' = a \circ \xi_1 = a \circ \xi_2$
we see that if $g : U' \to U$ is a morphism then
$$
g^*\xi_1 = g^*\xi_2
\Leftrightarrow
f_1 \circ g = f_2 \circ g.
$$
In other words, we see that $h_U \times_{\xi, F \times_G F} F$
is represented by $V \times_{\Delta, V \times V, (f_1, f_2)} U$
which is a scheme.
\end{proof}
\section{Lists of useful properties of morphisms of schemes}
\label{section-lists}
\noindent
For ease of reference we list in the following remarks the
properties of morphisms which possess some of the properties
required of them in later results.
\begin{remark}
\label{remark-list-properties-stable-base-change}
Here is a list of properties/types of morphisms
which are {\it stable under arbitrary base change}:
\begin{enumerate}
\item closed, open, and locally closed immersions, see
Schemes, Lemma \ref{schemes-lemma-base-change-immersion},
\item quasi-compact, see
Schemes, Lemma \ref{schemes-lemma-quasi-compact-preserved-base-change},
\item universally closed, see
Schemes, Definition \ref{schemes-definition-universally-closed},
\item (quasi-)separated, see
Schemes, Lemma \ref{schemes-lemma-separated-permanence},
\item monomorphism, see
Schemes, Lemma \ref{schemes-lemma-base-change-monomorphism}
\item surjective, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-surjective},
\item universally injective, see
Morphisms, Lemma \ref{morphisms-lemma-universally-injective},
\item affine, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-affine},
\item quasi-affine, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-quasi-affine},
\item (locally) of finite type, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-finite-type},
\item (locally) quasi-finite, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-quasi-finite},
\item (locally) of finite presentation, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-finite-presentation},
\item locally of finite type of relative dimension $d$, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-relative-dimension-d},
\item universally open, see
Morphisms, Definition \ref{morphisms-definition-open},
\item flat, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-flat},
\item syntomic, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-syntomic},
\item smooth, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-smooth},
\item unramified (resp.\ G-unramified), see
Morphisms, Lemma \ref{morphisms-lemma-base-change-unramified},
\item \'etale, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-etale},
\item proper, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-proper},
\item H-projective, see
Morphisms, Lemma \ref{morphisms-lemma-H-projective-base-change},
\item (locally) projective, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-projective},
\item finite or integral, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-finite},
\item finite locally free, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-finite-locally-free}.
\end{enumerate}
Add more as needed.
\end{remark}
\begin{remark}
\label{remark-list-properties-stable-composition}
Of the properties of morphisms which are stable under base change
(as listed in
Remark \ref{remark-list-properties-stable-base-change})
the following are also {\it stable under compositions}:
\begin{enumerate}
\item closed, open and locally closed immersions, see
Schemes, Lemma \ref{schemes-lemma-composition-immersion},
\item quasi-compact, see
Schemes, Lemma \ref{schemes-lemma-composition-quasi-compact},
\item universally closed, see
Morphisms, Lemma \ref{morphisms-lemma-composition-proper},
\item (quasi-)separated, see
Schemes, Lemma \ref{schemes-lemma-separated-permanence},
\item monomorphism, see
Schemes, Lemma \ref{schemes-lemma-composition-monomorphism},
\item surjective, see
Morphisms, Lemma \ref{morphisms-lemma-composition-surjective},
\item universally injective, see
Morphisms, Lemma \ref{morphisms-lemma-composition-universally-injective},
\item affine, see
Morphisms, Lemma \ref{morphisms-lemma-composition-affine},
\item quasi-affine, see
Morphisms, Lemma \ref{morphisms-lemma-composition-quasi-affine},
\item (locally) of finite type, see
Morphisms, Lemma \ref{morphisms-lemma-composition-finite-type},
\item (locally) quasi-finite, see
Morphisms, Lemma \ref{morphisms-lemma-composition-quasi-finite},
\item (locally) of finite presentation, see
Morphisms, Lemma \ref{morphisms-lemma-composition-finite-presentation},
\item universally open, see
Morphisms, Lemma \ref{morphisms-lemma-composition-open},
\item flat, see
Morphisms, Lemma \ref{morphisms-lemma-composition-flat},
\item syntomic, see
Morphisms, Lemma \ref{morphisms-lemma-composition-syntomic},
\item smooth, see
Morphisms, Lemma \ref{morphisms-lemma-composition-smooth},
\item unramified (resp.\ G-unramified), see
Morphisms, Lemma \ref{morphisms-lemma-composition-unramified},
\item \'etale, see
Morphisms, Lemma \ref{morphisms-lemma-composition-etale},
\item proper, see
Morphisms, Lemma \ref{morphisms-lemma-composition-proper},
\item H-projective, see
Morphisms, Lemma \ref{morphisms-lemma-H-projective-composition},
\item finite or integral, see
Morphisms, Lemma \ref{morphisms-lemma-composition-finite},
\item finite locally free, see
Morphisms, Lemma \ref{morphisms-lemma-composition-finite-locally-free}.
\end{enumerate}
Add more as needed.
\end{remark}
\begin{remark}
\label{remark-list-properties-fpqc-local-base}
Of the properties mentioned which are stable under base change
(as listed in Remark \ref{remark-list-properties-stable-base-change})
the following are also {\it fpqc local on the base}
(and a fortiori fppf local on the base):
\begin{enumerate}
\item for immersions we have this for
\begin{enumerate}
\item closed immersions, see
Descent, Lemma \ref{descent-lemma-descending-property-closed-immersion},
\item open immersions, see
Descent, Lemma \ref{descent-lemma-descending-property-open-immersion}, and
\item quasi-compact immersions, see
Descent,
Lemma \ref{descent-lemma-descending-property-quasi-compact-immersion},
\end{enumerate}
\item quasi-compact, see
Descent, Lemma \ref{descent-lemma-descending-property-quasi-compact},
\item universally closed, see
Descent, Lemma
\ref{descent-lemma-descending-property-universally-closed},
\item (quasi-)separated, see
Descent, Lemmas
\ref{descent-lemma-descending-property-quasi-separated}, and
\ref{descent-lemma-descending-property-separated},
\item monomorphism, see
Descent, Lemma \ref{descent-lemma-descending-property-monomorphism},
\item surjective, see
Descent, Lemma \ref{descent-lemma-descending-property-surjective},
\item universally injective, see
Descent, Lemma \ref{descent-lemma-descending-property-universally-injective},
\item affine, see
Descent, Lemma \ref{descent-lemma-descending-property-affine},
\item quasi-affine, see
Descent, Lemma \ref{descent-lemma-descending-property-quasi-affine},
\item (locally) of finite type, see
Descent,
Lemmas \ref{descent-lemma-descending-property-locally-finite-type}, and
\ref{descent-lemma-descending-property-finite-type},
\item (locally) quasi-finite, see
Descent, Lemma \ref{descent-lemma-descending-property-quasi-finite},
\item (locally) of finite presentation, see
Descent, Lemmas
\ref{descent-lemma-descending-property-locally-finite-presentation}, and
\ref{descent-lemma-descending-property-finite-presentation},
\item locally of finite type of relative dimension $d$, see
Descent,
Lemma \ref{descent-lemma-descending-property-relative-dimension-d},
\item universally open, see
Descent, Lemma \ref{descent-lemma-descending-property-universally-open},
\item flat, see
Descent, Lemma \ref{descent-lemma-descending-property-flat},
\item syntomic, see
Descent, Lemma \ref{descent-lemma-descending-property-syntomic},
\item smooth, see
Descent, Lemma \ref{descent-lemma-descending-property-smooth},
\item unramified (resp.\ G-unramified), see
Descent, Lemma \ref{descent-lemma-descending-property-unramified},
\item \'etale, see
Descent, Lemma \ref{descent-lemma-descending-property-etale},
\item proper, see
Descent, Lemma \ref{descent-lemma-descending-property-proper},
\item finite or integral, see
Descent, Lemma \ref{descent-lemma-descending-property-finite},
\item finite locally free, see
Descent,
Lemma \ref{descent-lemma-descending-property-finite-locally-free}.
\end{enumerate}
Note that the property of being an ``immersion'' may not be fpqc local
on the base, but in
Descent, Lemma \ref{descent-lemma-descending-fppf-property-immersion}
we proved that it is fppf local on the base.
\end{remark}
\section{Properties of representable morphisms of presheaves}
\label{section-representable-properties}
\noindent
Here is the definition that makes this work.
\begin{definition}
\label{definition-relative-representable-property}
With $S$, and $a : F \to G$ representable as above.
Let $\mathcal{P}$ be a property of morphisms of schemes which
\begin{enumerate}
\item is preserved under any base change,
see Schemes, Definition \ref{schemes-definition-preserved-by-base-change},
and
\item is fppf local on the base, see
Descent, Definition \ref{descent-definition-property-morphisms-local}.
\end{enumerate}
In this case we say that $a$ has {\it property $\mathcal{P}$} if for every
$U \in \Ob((\Sch/S)_{fppf})$ and
any $\xi \in G(U)$ the resulting morphism of schemes
$V_\xi \to U$ has property $\mathcal{P}$.
\end{definition}
\noindent
It is important to note that we will only use this definition for
properties of morphisms that are stable under base change, and
local in the fppf topology on the base. This is
not because the definition doesn't make sense otherwise; rather it
is because we may want to give a different definition which is
better suited to the property we have in mind.
\begin{remark}
\label{remark-warning}
Consider the property $\mathcal{P}=$``surjective''.
In this case there could be some ambiguity if we say
``let $F \to G$ be a surjective map''.
Namely, we could mean the notion defined
in Definition \ref{definition-relative-representable-property}
above, or we could mean a surjective map of presheaves, see
Sites, Definition \ref{sites-definition-presheaves-injective-surjective},
or, if both $F$ and $G$ are sheaves,
we could mean a surjective map of sheaves, see
Sites, Definition \ref{sites-definition-sheaves-injective-surjective},
If not mentioned otherwise when discussing morphisms of algebraic spaces
we will always mean the first. See
Lemma \ref{lemma-surjective-flat-locally-finite-presentation}
for a case where surjectivity implies surjectivity as a map of sheaves.
\end{remark}
\noindent
Here is a sanity check.
\begin{lemma}
\label{lemma-morphism-schemes-gives-representable-transformation-property}
Let $S$, $X$, $Y$ be objects of $\Sch_{fppf}$.
Let $f : X \to Y$ be a morphism of schemes.
Let $\mathcal{P}$ be as in
Definition \ref{definition-relative-representable-property}.
Then $h_X \longrightarrow h_Y$ has property $\mathcal{P}$ if
and only if $f$ has property $\mathcal{P}$.
\end{lemma}
\begin{proof}
Note that the lemma makes sense by
Lemma \ref{lemma-morphism-schemes-gives-representable-transformation}.
Proof omitted.
\end{proof}
\begin{lemma}
\label{lemma-composition-representable-transformations-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G, H : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $\mathcal{P}$ be a property as in
Definition \ref{definition-relative-representable-property}
which is stable under composition.
Let $a : F \to G$, $b : G \to H$ be representable transformations of functors.
If $a$ and $b$ have property $\mathcal{P}$ so does
$b \circ a : F \longrightarrow H$.
\end{lemma}
\begin{proof}
Note that the lemma makes sense by
Lemma \ref{lemma-composition-representable-transformations}.
Proof omitted.
\end{proof}
\begin{lemma}
\label{lemma-base-change-representable-transformations-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G, H : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $\mathcal{P}$ be a property as in
Definition \ref{definition-relative-representable-property}.
Let $a : F \to G$ be a representable transformations of functors.
Let $b : H \to G$ be any transformation of functors.
Consider the fibre product diagram
$$
\xymatrix{
H \times_{b, G, a} F \ar[r]_-{b'} \ar[d]_{a'} & F \ar[d]^a \\
H \ar[r]^b & G
}
$$
If $a$ has property $\mathcal{P}$ then also the base change $a'$
has property $\mathcal{P}$.
\end{lemma}
\begin{proof}
Note that the lemma makes sense by
Lemma \ref{lemma-base-change-representable-transformations}.
Proof omitted.
\end{proof}
\begin{lemma}
\label{lemma-descent-representable-transformations-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G, H : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $\mathcal{P}$ be a property as in
Definition \ref{definition-relative-representable-property}.
Let $a : F \to G$ be a representable transformations of functors.
Let $b : H \to G$ be any transformation of functors.
Consider the fibre product diagram
$$
\xymatrix{
H \times_{b, G, a} F \ar[r]_-{b'} \ar[d]_{a'} & F \ar[d]^a \\
H \ar[r]^b & G
}
$$
Assume that $b$ induces a surjective map of fppf sheaves $H^\# \to G^\#$.
In this case, if $a'$ has property $\mathcal{P}$, then also $a$
has property $\mathcal{P}$.
\end{lemma}
\begin{proof}
First we remark that by
Lemma \ref{lemma-base-change-representable-transformations}
the transformation $a'$ is representable.
Let $U \in \Ob((\Sch/S)_{fppf})$, and let
$\xi \in G(U)$. By assumption there exists an fppf covering
$\{U_i \to U\}_{i \in I}$ and elements $\xi_i \in H(U_i)$ mapping
to $\xi|_U$ via $b$. From general category theory it follows that for
each $i$ we have a fibre product diagram
$$
\xymatrix{
U_i \times_{\xi_i, H, a'} (H \times_{b, G, a} F) \ar[r] \ar[d] &
U \times_{\xi, G, a} F \ar[d] \\
U_i \ar[r] & U
}
$$
By assumption the left vertical arrow is a morphism of schemes which
has property $\mathcal{P}$. Since $\mathcal{P}$ is local in the fppf
topology this implies that also the right vertical arrow has property
$\mathcal{P}$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-product-representable-transformations-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F_i, G_i : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$,
$i = 1, 2$.
Let $a_i : F_i \to G_i$, $i = 1, 2$ be representable transformations
of functors.
Let $\mathcal{P}$ be a property as in
Definition \ref{definition-relative-representable-property}
which is stable under composition.
If $a_1$ and $a_2$ have property $\mathcal{P}$ so does
$a_1 \times a_2 : F_1 \times F_2 \longrightarrow G_1 \times G_2$.
\end{lemma}
\begin{proof}
Note that the lemma makes sense by
Lemma \ref{lemma-product-representable-transformations}.
Proof omitted.
\end{proof}
\begin{lemma}
\label{lemma-representable-transformations-property-implication}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $a : F \to G$ be a representable transformation of functors.
Let $\mathcal{P}$, $\mathcal{P}'$ be properties as in
Definition \ref{definition-relative-representable-property}.
Suppose that for any morphism of schemes $f : X \to Y$
we have $\mathcal{P}(f) \Rightarrow \mathcal{P}'(f)$.
If $a$ has property $\mathcal{P}$ then
$a$ has property $\mathcal{P}'$.
\end{lemma}
\begin{proof}
Formal.
\end{proof}
\begin{lemma}
\label{lemma-surjective-flat-locally-finite-presentation}
Let $S$ be a scheme.
Let $F, G : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$ be sheaves.
Let $a : F \to G$ be representable, flat,
locally of finite presentation, and surjective.
Then $a : F \to G$ is surjective as a map of sheaves.
\end{lemma}
\begin{proof}
Let $T$ be a scheme over $S$ and let $g : T \to G$ be a $T$-valued point of
$G$. By assumption $T' = F \times_G T$ is (representable by) a scheme and
the morphism $T' \to T$ is a flat, locally of finite presentation, and
surjective. Hence $\{T' \to T\}$ is an fppf covering such
that $g|_{T'} \in G(T')$ comes from an element of $F(T')$, namely
the map $T' \to F$. This proves the map is surjective as
a map of sheaves, see
Sites, Definition \ref{sites-definition-sheaves-injective-surjective}.
\end{proof}
\noindent
Here is a characterization of those functors for which the
diagonal is representable.
\begin{lemma}
\label{lemma-representable-diagonal}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F$ be a presheaf of sets on $(\Sch/S)_{fppf}$.
The following are equivalent:
\begin{enumerate}
\item The diagonal $F \to F \times F$ is representable.
\item For every scheme $U$ over $S$,
$U/S \in \Ob((\Sch/S)_{fppf})$
and any $\xi \in F(U)$ the map $\xi : h_U \to F$ is representable.
\end{enumerate}
\end{lemma}
\begin{proof}
This is completely formal, see
Categories, Lemma \ref{categories-lemma-representable-diagonal}.
It depends only on the fact that the category $(\Sch/S)_{fppf}$
has products of pairs of objects and fibre products, see
Topologies, Lemma \ref{topologies-lemma-fibre-products-fppf}.
\end{proof}
\noindent
In the situation of the lemma, for any morphism
$\xi : h_U \to F$ as in the lemma, it makes sense
to say that $\xi$ has property $\mathcal{P}$, for any property
as in Definition \ref{definition-relative-representable-property}.
In particular this holds for $\mathcal{P} = $ ``surjective''
and $\mathcal{P} = $ ``\'etale'', see
Remark \ref{remark-list-properties-fpqc-local-base}
above. We will use these in the definition
of algebraic spaces below.
\section{Algebraic spaces}
\label{section-algebraic-spaces}
\noindent
Here is the definition.
\begin{definition}
\label{definition-algebraic-space}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
An {\it algebraic space over $S$} is a presheaf
$$
F : (\Sch/S)^{opp}_{fppf} \longrightarrow \textit{Sets}
$$
with the following properties
\begin{enumerate}
\item The presheaf $F$ is a sheaf.
\item The diagonal morphism $F \to F \times F$ is representable.
\item There exists a scheme $U \in \Ob(\Sch_{fppf})$
and a map $h_U \to F$ which is surjective, and \'etale.
\end{enumerate}
\end{definition}
\noindent
There are two differences with the ``usual'' definition, for example the
definition in Knutson's book \cite{Kn}.
\medskip\noindent
The first is that we require $F$ to be a sheaf in the fppf topology.
One reason for doing this is that many natural examples
of algebraic spaces satisfy the sheaf condition for the fppf coverings
(and even for fpqc coverings). Also, one of the reasons that algebraic
spaces have been so useful is via Michael Artin's results on algebraic spaces.
Built into his method is a condition which guarantees the result is
locally of finite presentation over $S$.
Combined it somehow seems to us that the fppf topology
is the natural topology to work with. In the end the category
of algebraic spaces ends up being the same. See
Bootstrap, Section \ref{bootstrap-section-spaces-etale}.
\medskip\noindent
The second is that we only require the diagonal map for $F$ to be
representable, whereas in \cite{Kn} it is required that it also
be quasi-compact. If $F = h_U$ for some scheme $U$ over $S$
this corresponds to the condition that $U$ be quasi-separated.
Our point of view is to try to prove a certain
number of the results that follow only assuming that the diagonal
of $F$ be representable, and simply add an addition hypothesis wherever
this is necessary. In any case it has the pleasing consequence that
the following lemma is true.
\begin{lemma}
\label{lemma-scheme-is-space}
A scheme is an algebraic space. More precisely,
given a scheme $T \in \Ob((\Sch/S)_{fppf})$
the representable functor $h_T$ is an algebraic space.
\end{lemma}
\begin{proof}
The functor $h_T$ is a sheaf by our remarks in Section \ref{section-general}.
The diagonal $h_T \to h_T \times h_T = h_{T \times T}$ is
representable because $(\Sch/S)_{fppf}$ has fibre products.
The identity map $h_T \to h_T$ is surjective \'etale.
\end{proof}
\begin{definition}
\label{definition-morphism-algebraic-spaces}
Let $F$, $F'$ be algebraic spaces over $S$.
A {\it morphism $f : F \to F'$ of algebraic spaces over $S$}
is a transformation of functors from $F$ to $F'$.
\end{definition}
\noindent
The category of algebraic spaces over $S$ contains the category
$(\Sch/S)_{fppf}$ as a full subcategory via the
Yoneda embedding $T/S \mapsto h_T$. From now on we no longer distinguish
between a scheme $T/S$ and the algebraic space it represents.
Thus when we say ``Let $f : T \to F$ be a morphism from the scheme
$T$ to the algebraic space $F$'', we mean that
$T \in \Ob((\Sch/S)_{fppf})$, that $F$ is an
algebraic space over $S$, and that $f : h_T \to F$ is a morphism
of algebraic spaces over $S$.
\section{Fibre products of algebraic spaces}
\label{section-fibre-products}
\noindent
The category of algebraic spaces over $S$ has both products and
fibre products.
\begin{lemma}
\label{lemma-product-spaces}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F, G$ be algebraic spaces over $S$.
Then $F \times G$ is an algebraic space, and is a product
in the category of algebraic spaces over $S$.
\end{lemma}
\begin{proof}
It is clear that $H = F \times G$ is a sheaf.
The diagonal of $H$ is simply the product of the
diagonals of $F$ and $G$. Hence it is representable by
Lemma \ref{lemma-product-representable-transformations}.
Finally, if $U \to F$ and $V \to G$ are surjective
\'etale morphisms, with $U, V \in \Ob((\Sch/S)_{fppf})$,
then $U \times V \to F \times G$ is surjective \'etale
by Lemma \ref{lemma-product-representable-transformations-property}.
\end{proof}
\begin{lemma}
\label{lemma-fibre-product-spaces-over-sheaf-with-representable-diagonal}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $H$ be a sheaf on $(\Sch/S)_{fppf}$ whose diagonal
is representable. Let $F, G$ be algebraic spaces over $S$.
Let $F \to H$, $G \to H$ be maps of sheaves.
Then $F \times_H G$ is an algebraic space.
\end{lemma}
\begin{proof}
We check the 3 conditions of
Definition \ref{definition-algebraic-space}.
A fibre product of sheaves is a sheaf, hence $F \times_H G$ is a sheaf.
The diagonal of $F \times_H G$ is the left vertical arrow in
$$
\xymatrix{
F \times_H G \ar[r] \ar[d]_\Delta &
F \times G \ar[d]^{\Delta_F \times \Delta_G} \\
(F \times F) \times_{(H \times H)} (G \times G) \ar[r] &
(F \times F) \times (G \times G)
}
$$
which is cartesian. Hence $\Delta$ is representable as the base change
of the morphism on the right which is representable, see
Lemmas \ref{lemma-product-representable-transformations} and
\ref{lemma-base-change-representable-transformations}.
Finally, let $U, V \in \Ob((\Sch/S)_{fppf})$
and $a : U \to F$, $b : V \to G$ be surjective and \'etale.
As $\Delta_H$ is representable, we see that $U \times_H V$ is a scheme.
The morphism
$$
U \times_H V \longrightarrow F \times_H G
$$
is surjective and \'etale as a composition of the base changes
$U \times_H V \to U \times_H G$ and $U \times_H G \to F \times_H G$
of the \'etale surjective morphisms $U \to F$ and $V \to G$, see
Lemmas \ref{lemma-composition-representable-transformations} and
\ref{lemma-base-change-representable-transformations}.
This proves the last condition of
Definition \ref{definition-algebraic-space}
holds and we conclude that $F \times_H G$ is an algebraic space.
\end{proof}
\begin{lemma}
\label{lemma-fibre-product-spaces}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $F \to H$, $G \to H$ be morphisms of algebraic spaces over $S$.
Then $F \times_H G$ is an algebraic space, and is a fibre product
in the category of algebraic spaces over $S$.
\end{lemma}
\begin{proof}
It follows from the stronger
Lemma \ref{lemma-fibre-product-spaces-over-sheaf-with-representable-diagonal}
that $F \times_H G$ is an algebraic space.
It is clear that $F \times_H G$
is a fibre product in the category of algebraic spaces over $S$
since that is a full subcategory of the category
of (pre)sheaves of sets on $(\Sch/S)_{fppf}$.
\end{proof}
\section{Glueing algebraic spaces}
\label{section-glueing-algebraic-spaces}
\noindent
In this section we really start abusing notation and not
distinguish between schemes and the spaces they represent.
\begin{lemma}
\label{lemma-representable-sheaf-coproduct-sheaves}
Let $S \in \Ob(\Sch_{fppf})$.
Let $U \in \Ob((\Sch/S)_{fppf})$.
Given a set $I$ and sheaves $F_i$ on $\Ob((\Sch/S)_{fppf})$,
if $U \cong \coprod_{i\in I} F_i$
as sheaves, then each $F_i$ is representable by an open and closed
subscheme $U_i$ and $U \cong \coprod U_i$ as schemes.
\end{lemma}
\begin{proof}
By assumption this means there exists an fppf covering
$\{U_j \to U\}_{j \in J}$ such that each $U_j \to U$
factors through $F_{i(j)}$ for some $i(j) \in I$.
Denote $V_j = \Im(U_j \to U)$.
This is an open of $U$ by
Morphisms, Lemma \ref{morphisms-lemma-fppf-open}, and
$\{U_j \to V_j\}$ is an fppf covering. Hence it follows that
$V_j \to U$ factors through $F_{i(j)}$ since $F_{i(j)}$ is
a subsheaf. It follows from $F_i \cap F_{i'} = \emptyset$, $i \not = i'$
that $V_j \cap V_{j'} = \emptyset$
unless $i(j) = i(j')$. Hence we can take
$U_i = \bigcup_{j, \ i(j) = i} V_j$ and everything is clear.
\end{proof}
\begin{lemma}
\label{lemma-algebraic-space-coproduct-sheaves}
Let $S \in \Ob(\Sch_{fppf})$.
Let $F$ be an algebraic space over $S$.
Given a set $I$ and sheaves $F_i$ on
$\Ob((\Sch/S)_{fppf})$,
if $F \cong \coprod_{i\in I} F_i$ as sheaves,
then each $F_i$ is an algebraic space over $S$.
\end{lemma}
\begin{proof}
It follows directly from the representability of
$F \to F \times F$ that each diagonal morphism
$F_i \to F_i \times F_i$ is representable.
Choose a scheme $U$ in $(\Sch/S)_{fppf}$ and a surjective
\'etale morphism $U \to \coprod F_i$ (this exist by hypothesis).
By considering the inverse image of $F_i$ we get a decomposition
of $U$ (as a sheaf) into a coproduct of sheaves.
By Lemma \ref{lemma-representable-sheaf-coproduct-sheaves}
we get correspondingly $U \cong \coprod U_i$.
Then it follows easily that $U_i \to F_i$ is surjective
and \'etale (from the corresponding property of $U \to F$).
\end{proof}
\noindent
The condition on the size of $I$ and the $F_i$ in the
following lemma may be ignored by those not worried about
set theoretic questions.
\begin{lemma}
\label{lemma-coproduct-algebraic-spaces}
Let $S \in \Ob(\Sch_{fppf})$.
Suppose given a set $I$ and algebraic spaces $F_i$, $i \in I$.
Then $F = \coprod_{i \in I} F_i$ is an algebraic space
provided $I$, and the $F_i$ are not too ``large'': for example if we
can choose surjective \'etale morphisms $U_i \to F_i$ such that
$\coprod_{i \in I} U_i$ is isomorphic to an object of
$(\Sch/S)_{fppf}$, then $F$ is an algebraic space.
\end{lemma}
\begin{proof}
By construction $F$ is a sheaf. We omit the verification that the
diagonal morphism of $F$ is representable. Finally, if $U$ is an
object of $(\Sch/S)_{fppf}$ isomorphic to $\coprod_{i \in I} U_i$
then it is straightforward to verify that the resulting map
$U \to \coprod F_i$ is surjective and \'etale.
\end{proof}
\noindent
Here is the analogue of Schemes, Lemma \ref{schemes-lemma-glue-functors}.
\begin{lemma}
\label{lemma-glueing-algebraic-spaces}
Let $S \in \Ob(\Sch_{fppf})$.
Let $F$ be a presheaf of sets on $(\Sch/S)_{fppf}$.
Assume
\begin{enumerate}