forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spaces-perfect.tex
4437 lines (4022 loc) · 163 KB
/
spaces-perfect.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Derived Categories of Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we discuss derived categories of modules on algebraic spaces.
There do not seem to be good introductory references addressing this topic;
it is covered in the literature by referring to papers dealing with derived
categories of modules on algebraic stacks, for example see
\cite{olsson_sheaves}.
\section{Conventions}
\label{section-conventions}
\noindent
If $\mathcal{A}$ is an abelian category and $M$ is an object
of $\mathcal{A}$ then we also denote $M$ the object of $K(\mathcal{A})$
and/or $D(\mathcal{A})$ corresponding to the complex which has
$M$ in degree $0$ and is zero in all other degrees.
\medskip\noindent
If we have a ring $A$, then $K(A)$ denotes the homotopy category
of complexes of $A$-modules and $D(A)$ the associated derived category.
Similarly, if we have a ringed space $(X, \mathcal{O}_X)$ the symbol
$K(\mathcal{O}_X)$ denotes the homotopy category of complexes of
$\mathcal{O}_X$-modules and $D(\mathcal{O}_X)$ the associated derived
category.
\section{Generalities}
\label{section-generalities}
\noindent
In this section we put some general results on cohomology of unbounded
complexes of modules on algebraic spaces.
\begin{lemma}
\label{lemma-restrict-direct-image-open}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Given an \'etale morphism $V \to Y$, set $U = V \times_Y X$
and denote $g : U \to V$ the projection morphism. Then
$(Rf_*E)|_V = Rg_*(E|_U)$ for $E$ in $D(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Represent $E$ by a K-injective complex $\mathcal{I}^\bullet$ of
$\mathcal{O}_X$-modules. Then $Rf_*(E) = f_*\mathcal{I}^\bullet$
and $Rg_*(E|_U) = g_*(\mathcal{I}^\bullet|_U)$ by
Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-restrict-K-injective-to-open}.
Hence the result follows from
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-pushforward-etale-base-change-modules}.
\end{proof}
\begin{definition}
\label{definition-supported-on}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $E$ be an object of $D(\mathcal{O}_X)$.
Let $T \subset |X|$ be a closed subset.
We say $E$ is {\it supported on $T$} if the
cohomology sheaves $H^i(E)$ are supported on $T$.
\end{definition}
\section{Derived category of quasi-coherent modules on the small \'etale site}
\label{section-derived-quasi-coherent-etale}
\noindent
Let $X$ be a scheme. In this section we show that
$D_\QCoh(\mathcal{O}_X)$
can be defined in terms of the small \'etale site $X_\etale$ of $X$.
Denote $\mathcal{O}_\etale$ the structure sheaf on
$X_\etale$.
Consider the morphism of ringed sites
\begin{equation}
\label{equation-epsilon}
\epsilon :
(X_\etale, \mathcal{O}_\etale)
\longrightarrow
(X_{Zar}, \mathcal{O}_X).
\end{equation}
denoted $\text{id}_{small, \etale, Zar}$ in
Descent, Lemma \ref{descent-lemma-compare-sites}.
\begin{lemma}
\label{lemma-epsilon-flat}
The morphism $\epsilon$ of (\ref{equation-epsilon})
is a flat morphism of ringed sites. In particular the functor
$\epsilon^* : \textit{Mod}(\mathcal{O}_X) \to
\textit{Mod}(\mathcal{O}_\etale)$ is exact.
Moreover, if $\epsilon^*\mathcal{F} = 0$, then $\mathcal{F} = 0$.
\end{lemma}
\begin{proof}
The second assertion follows from the first by
Modules on Sites, Lemma \ref{sites-modules-lemma-flat-pullback-exact}.
To prove the first assertion we have to show that
$\mathcal{O}_\etale$ is a flat $\epsilon^{-1}\mathcal{O}_X$-module.
To do this it suffices to check
$\mathcal{O}_{X, x} \to \mathcal{O}_{\etale, \overline{x}}$
is flat for any geometric point $\overline{x}$ of $X$, see
Modules on Sites, Lemma
\ref{sites-modules-lemma-check-flat-stalks},
Sites, Lemma
\ref{sites-lemma-point-morphism-sites},
and
\'Etale Cohomology, Remarks
\ref{etale-cohomology-remarks-enough-points}.
By \'Etale Cohomology, Lemma
\ref{etale-cohomology-lemma-describe-etale-local-ring}
we see that $\mathcal{O}_{\etale, \overline{x}}$ is the
strict henselization of $\mathcal{O}_{X, x}$. Thus
$\mathcal{O}_{X, x} \to \mathcal{O}_{\etale, \overline{x}}$
is faithfully flat by More on Algebra,
Lemma \ref{more-algebra-lemma-dumb-properties-henselization}.
The final statement follows also: if $\epsilon^*\mathcal{F} = 0$, then
$$
0 = \epsilon^*\mathcal{F}_{\overline{x}} =
\mathcal{F}_x \otimes_{\mathcal{O}_{X, x}} \mathcal{O}_\etale
$$
(Modules on Sites, Lemma \ref{sites-modules-lemma-pullback-stalk})
for all geometric points $\overline{x}$. By faithful flatness of
$\mathcal{O}_{X, x} \to \mathcal{O}_{\etale, \overline{x}}$
we conclude $\mathcal{F}_x = 0$ for all $x \in X$.
\end{proof}
\noindent
Let $X$ be a scheme. Notation as in (\ref{equation-epsilon}).
Recall that $\epsilon^* : \QCoh(\mathcal{O}_X)
\to \QCoh(\mathcal{O}_\etale)$
is an equivalence by
Descent, Proposition \ref{descent-proposition-equivalence-quasi-coherent} and
Remark \ref{descent-remark-change-topologies-ringed-sites}.
Moreover, $\QCoh(\mathcal{O}_\etale)$ forms a
Serre subcategory of
$\textit{Mod}(\mathcal{O}_\etale)$ by
Descent, Lemma \ref{descent-lemma-equivalence-quasi-coherent-limits}.
Hence we can let $D_\QCoh(\mathcal{O}_\etale)$ be the triangulated
subcategory of $D(\mathcal{O}_\etale)$ whose objects are the
complexes with quasi-coherent cohomology sheaves, see
Derived Categories, Section \ref{derived-section-triangulated-sub}.
The functor $\epsilon^*$ is exact (Lemma \ref{lemma-epsilon-flat})
hence induces
$\epsilon^* : D(\mathcal{O}_X) \to D(\mathcal{O}_\etale)$
and since pullbacks of quasi-coherent modules are quasi-coherent
also $\epsilon^* : D_\QCoh(\mathcal{O}_X) \to
D_\QCoh(\mathcal{O}_\etale)$.
\begin{lemma}
\label{lemma-derived-quasi-coherent-small-etale-site}
Let $X$ be a scheme. The functor
$\epsilon^* : D_\QCoh(\mathcal{O}_X) \to
D_\QCoh(\mathcal{O}_\etale)$
defined above is an equivalence.
\end{lemma}
\begin{proof}
We will prove this by showing the functor
$R\epsilon_* : D(\mathcal{O}_\etale) \to D(\mathcal{O}_X)$
induces a quasi-inverse.
\medskip\noindent
Every quasi-coherent $\mathcal{O}_\etale$-module
$\mathcal{H}$ is of the form $\epsilon^*\mathcal{F}$ for some quasi-coherent
$\mathcal{O}_X$-module $\mathcal{F}$, see
Descent, Proposition \ref{descent-proposition-equivalence-quasi-coherent}.
Since $\mathcal{F} = \epsilon_*\mathcal{H}$ in this case
(as $\epsilon_*$ is the restriction to $X_{Zar} \subset X_\etale$)
we conclude that the adjunction map
$\epsilon^*\epsilon_*\mathcal{H} \to \mathcal{H}$ is an isomorphism for all
quasi-coherent $\mathcal{O}_\etale$-modules $\mathcal{H}$.
\medskip\noindent
Let $E$ be an object of $D_\QCoh(\mathcal{O}_\etale)$
and denote $\mathcal{H}^i = H^i(E)$ its $i$th cohomology
sheaf. Let $\mathcal{B}$ be the set of affine objects of $X_\etale$.
Then $H^p(U, \mathcal{H}^i) = 0$ for all $p > 0$, all $i \in \mathbf{Z}$,
and all $U \in \mathcal{B}$, see
Descent, Proposition \ref{descent-proposition-same-cohomology-quasi-coherent}
and
Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}.
According to
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-K-injective}
this implies $E$ is represented by a K-injective complex
$\mathcal{I}^\bullet$ and
$\mathcal{I}^\bullet = \lim \mathcal{I}_n^\bullet$ where
each $\mathcal{I}_n^\bullet$ is a bounded below complex of injectives,
the maps in the system
$\ldots \to \mathcal{I}_2^\bullet \to \mathcal{I}_1^\bullet$
are termwise split surjections, and each $\mathcal{I}_n^\bullet$ is
quasi-isomorphic to $\tau_{\geq -n}E$.
In particular,
$$
R\epsilon_*E = \epsilon_*\mathcal{I}^\bullet =
\lim \epsilon_*\mathcal{I}_n^\bullet
$$
For every $U \in \mathcal{B}$ we have
$$
H^m(\mathcal{I}_n^\bullet(U)) =
\left\{
\begin{matrix}
\mathcal{H}^m(U) & \text{if} & m \geq -n \\
0 & \text{if} & m < n
\end{matrix}
\right.
$$
by the vanishing of $H^p(U, \mathcal{H}^i)$ for $p > 0$,
the spectral sequence
Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}, and
the fact that $\tau_{\geq -n}E \cong \mathcal{I}_n^\bullet$. Hence we can apply
Homology, Lemma \ref{homology-lemma-apply-Mittag-Leffler-again}
to the sequence of complexes
$$
\lim_n \mathcal{I}_n^{m - 2}(U) \to
\lim_n \mathcal{I}_n^{m - 1}(U) \to
\lim_n \mathcal{I}_n^m(U) \to
\lim_n \mathcal{I}_n^{m + 1}(U)
$$
to conclude that $H^m(\mathcal{I}^\bullet(U)) = \mathcal{H}^m(U)$ for
$U \in \mathcal{B}$. Since $\epsilon_*$ is restriction
to $X_{Zar}$ we see, on applying the above to $U \subset X$
affine open, that
$H^m(\epsilon_*\mathcal{I}^\bullet) = \epsilon_*\mathcal{H}^m$.
Thus $R\epsilon_*$ indeed gives rise to a functor
$$
R\epsilon_* :
D_\QCoh(\mathcal{O}_\etale)
\longrightarrow
D_\QCoh(\mathcal{O}_X)
$$
For our object $E$ of $D_\QCoh(\mathcal{O}_\etale)$ above
the adjunction map $\epsilon^*R\epsilon_*E \to E$
is an isomorphism as we've seen that the cohomology sheaves
of $R\epsilon_*E$ are $\epsilon_*\mathcal{H}^m$ and we have
$\epsilon^*\epsilon_*\mathcal{H}^m = \mathcal{H}^m$ (see above).
For $F \in D_\QCoh(\mathcal{O}_X)$ the
adjunction map $F \to R\epsilon_*\epsilon^*F$
is an isomorphism for the same reason, i.e., because
the cohomology sheaves of $R\epsilon_*\epsilon^*F$
are isomorphic to
$\epsilon_*H^m(\epsilon^*F) = \epsilon_*\epsilon^*H^m(F) = H^m(F)$.
\end{proof}
\section{Derived category of quasi-coherent modules}
\label{section-derived-quasi-coherent}
\noindent
Let $S$ be a scheme. Lemma
\ref{lemma-derived-quasi-coherent-small-etale-site}
shows that the category $D_\QCoh(\mathcal{O}_S)$ can be defined
in terms of complexes of $\mathcal{O}_S$-modules on the scheme $S$
or by complexes of $\mathcal{O}$-modules on the small \'etale site
of $S$. Hence the following definition is compatible with the definition
in the case of schemes.
\begin{definition}
\label{definition-derived-quasi-coherent}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
The {\it derived category of $\mathcal{O}_X$-modules with
quasi-coherent cohomology sheaves} is denoted
$D_\QCoh(\mathcal{O}_X)$.
\end{definition}
\noindent
This makes sense by
Properties of Spaces, Lemma
\ref{spaces-properties-lemma-properties-quasi-coherent}
and
Derived Categories, Section \ref{derived-section-triangulated-sub}.
Thus we obtain a canonical functor
\begin{equation}
\label{equation-compare}
D(\QCoh(\mathcal{O}_X))
\longrightarrow
D_\QCoh(\mathcal{O}_X)
\end{equation}
see Derived Categories, Equation (\ref{derived-equation-compare}).
\medskip\noindent
Observe that a flat morphism $f : Y \to X$ of algebraic spaces
induces an exact functor
$f^* : \textit{Mod}(\mathcal{O}_X) \to \textit{Mod}(\mathcal{O}_Y)$,
see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-flat-morphism-sites}
and
Modules on Sites, Lemma \ref{sites-modules-lemma-flat-pullback-exact}.
In particular $Lf^* : D(\mathcal{O}_X) \to D(\mathcal{O}_Y)$
is computed on any representative complex
(Derived Categories, Lemma \ref{derived-lemma-right-derived-exact-functor}).
We will write $Lf^* = f^*$ when $f$ is flat and we have
$H^i(f^*E) = f^*H^i(E)$ for $E$ in $D(\mathcal{O}_X)$ in this case.
We will use this often when $f$ is \'etale. Of course in the \'etale
case the pullback functor is just the restriction to $Y_\etale$,
see Properties of Spaces, Equation
(\ref{spaces-properties-equation-restrict-modules}).
\begin{lemma}
\label{lemma-check-quasi-coherence-on-covering}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $E$ be an object of $D(\mathcal{O}_X)$. The following are equivalent
\begin{enumerate}
\item $E$ is in $D_\QCoh(\mathcal{O}_X)$,
\item for every \'etale morphism $\varphi : U \to X$ where $U$ is an
affine scheme $\varphi^*E$ is an object of
$D_\QCoh(\mathcal{O}_U)$,
\item for every \'etale morphism $\varphi : U \to X$ where $U$ is a scheme
$\varphi^*E$ is an object of
$D_\QCoh(\mathcal{O}_U)$,
\item there exists a surjective \'etale morphism $\varphi : U \to X$
where $U$ is a scheme such that $\varphi^*E$ is an object of
$D_\QCoh(\mathcal{O}_U)$, and
\item there exists a surjective \'etale morphism of algebraic spaces
$f : Y \to X$ such that $Lf^*E$ is an object of
$D_\QCoh(\mathcal{O}_Y)$.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows immediately from the discussion preceding the lemma and
Properties of Spaces, Lemma
\ref{spaces-properties-lemma-characterize-quasi-coherent}.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-direct-sums}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Then $D_\QCoh(\mathcal{O}_X)$ has direct sums.
\end{lemma}
\begin{proof}
By Injectives, Lemma \ref{injectives-lemma-derived-products}
the derived category $D(\mathcal{O}_X)$ has direct sums and
they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the
direct sum of the cohomology sheaves as taking direct sums is
an exact functor (in any Grothendieck abelian category). The lemma
follows as the direct sum of quasi-coherent sheaves is quasi-coherent, see
Properties of Spaces, Lemma
\ref{spaces-properties-lemma-properties-quasi-coherent}.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-pullback}
Let $S$ be a scheme.
Let $f : Y \to X$ be a morphism of algebraic spaces over $S$.
The functor $Lf^*$ sends $D_\QCoh(\mathcal{O}_X)$
into $D_\QCoh(\mathcal{O}_Y)$.
\end{lemma}
\begin{proof}
Choose a diagram
$$
\xymatrix{
U \ar[d]_a \ar[r]_h & V \ar[d]^b \\
X \ar[r]^f & Y
}
$$
where $U$ and $V$ are schemes, the vertical arrows are \'etale, and
$a$ is surjective. Since $a^* \circ Lf^* = Lh^* \circ b^*$ the result
follows from
Lemma \ref{lemma-check-quasi-coherence-on-covering}
and the case of schemes which is
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-pullback}.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-tensor-product}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
For objects $K, L$ of $D_\QCoh(\mathcal{O}_X)$
the derived tensor product $K \otimes^\mathbf{L} L$ is in
$D_\QCoh(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Let $\varphi : U \to X$ be a surjective \'etale morphism from a scheme $U$.
Since
$\varphi^*(K \otimes_{\mathcal{O}_X}^\mathbf{L} L) =
\varphi^*K \otimes_{\mathcal{O}_U}^\mathbf{L} \varphi^*L$
we see from
Lemma \ref{lemma-check-quasi-coherence-on-covering}
that this follows from the case of schemes which is
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-tensor-product}.
\end{proof}
\noindent
The following lemma will help us to ``compute'' a right derived functor
on an object of $D_\QCoh(\mathcal{O}_X)$.
\begin{lemma}
\label{lemma-nice-K-injective}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $E$ be an
object of $D_\QCoh(\mathcal{O}_X)$. Then there exists an inverse
system $\mathcal{I}_n^\bullet$ of complexes of $\mathcal{O}_X$-modules
such that
\begin{enumerate}
\item $\mathcal{I}^\bullet = \lim_n \mathcal{I}_n^\bullet$ represents $E$,
\item $\mathcal{I}_n^\bullet$ is a bounded below complex of injectives,
\item $\mathcal{I}^\bullet \to \mathcal{I}_n^\bullet$ induces an
identification $\tau_{\geq -n}E \to \mathcal{I}_n^\bullet$
in $D(\mathcal{O}_X)$,
\item the transition maps
$\mathcal{I}_{n + 1}^\bullet \to \mathcal{I}_n^\bullet$
are termwise split surjections, and
\item $\mathcal{I}^\bullet$ is a K-injective complex of
$\mathcal{O}_X$-modules.
\end{enumerate}
Moreover, $E$ is the derived limit of the inverse system of
its canonical truncations $\tau_{\geq -n}E$.
\end{lemma}
\begin{proof}
Denote $\mathcal{H}^i = H^i(E)$ the $i$th cohomology sheaf of $E$.
Let $\mathcal{B}$ be the set of affine objects of $X_\etale$.
Then $H^p(U, \mathcal{H}^i) = 0$ for all $p > 0$, all $i \in \mathbf{Z}$,
and all $U \in \mathcal{B}$ as $U$ is an affine scheme.
See discussion in
Cohomology of Spaces, Section
\ref{spaces-cohomology-section-higher-direct-image}
and
Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}.
Thus the lemma follows from
Cohomology on Sites, Lemmas \ref{sites-cohomology-lemma-K-injective} and
\ref{sites-cohomology-lemma-is-limit}.
\end{proof}
\begin{lemma}
\label{lemma-application-nice-K-injective}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $F : \textit{Mod}(\mathcal{O}_X) \to \textit{Ab}$
be a functor and $N \geq 0$ an integer. Assume that
\begin{enumerate}
\item $F$ is left exact,
\item $F$ commutes with countable direct products,
\item $R^pF(\mathcal{F}) = 0$ for all $p \geq N$ and $\mathcal{F}$
quasi-coherent.
\end{enumerate}
Then for $E \in D_\QCoh(\mathcal{O}_X)$ the maps
$R^pF(E) \to R^pF(\tau_{\geq p - N + 1}E)$ are isomorphisms.
\end{lemma}
\begin{proof}
Let $E$ be an object of $D_\QCoh(\mathcal{O}_X)$.
By shifting the complex we see it suffices to prove the assertion
for $p = 0$. Choose $\mathcal{I}^\bullet = \lim \mathcal{I}_n^\bullet$
as in Lemma \ref{lemma-nice-K-injective}.
As $\mathcal{I}^\bullet$ is K-injective $RF(E)$ is represented by
$F(\mathcal{I}^\bullet)$. As $F$ commutes with countable direct
products, and since the maps $\mathcal{I}_n^m \to \mathcal{I}_{n - 1}^m$
are split surjections, we get
$F(\mathcal{I}^\bullet) = \lim F(\mathcal{I}_n^\bullet)$.
The cohomology of
\begin{equation}
\label{equation-system-F}
F(\mathcal{I}_n^{-2}) \to
F(\mathcal{I}_n^{-1}) \to
F(\mathcal{I}_n^0) \to
F(\mathcal{I}_n^1)
\end{equation}
in degree $0$, resp.\ $-1$ is equal to $R^0F(\tau_{\geq -n}E)$,
resp.\ $R^{-1}F(\tau_{\geq -n}E)$ because $\mathcal{I}_n^\bullet$
is a bounded below complex of injectives representing $\tau_{\geq -n}E$.
We have a distinguished triangle
$$
H^{-n}(E)[n] \to \tau_{\geq -n}E \to \tau_{\geq - n + 1}E \to H^{-n}(E)[n + 1]
$$
(Derived Categories, Remark
\ref{derived-remark-truncation-distinguished-triangle})
in $D(\mathcal{O}_X)$. Since $H^{-n}(E)$ is quasi-coherent we have
$$
R^pF(H^{-n}(E)[n]) = R^{p + n}F(H^{-n}(E)) = 0
$$
for $p + n \geq N$ and
$$
R^pF(H^{-n}(E)[n + 1]) = R^{p + n + 1}F(H^{-n}(E)) = 0
$$
for $p + n + 1 \geq N$. We conclude that
$$
R^pF(\tau_{\geq -n}E) \to R^pF(\tau_{\geq - n + 1}E)
$$
is an isomorphism for all $n \gg p$ and an isomorphism for
$n \geq N$ for $p = 0$. Thus
Homology, Lemma \ref{homology-lemma-apply-Mittag-Leffler-again}
applies to the system of sequences (\ref{equation-system-F})
and we conclude that $R^0F(E) = \lim R^0F(\tau_{\geq - n}E)$.
By the above the system $R^0F(\tau_{\geq - n}E)$ is constant starting
with $n = N - 1$ as desired.
\end{proof}
\section{Total direct image}
\label{section-total-direct-image}
\noindent
The following lemma is the analogue of
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-vanishing-higher-direct-images}.
\begin{lemma}
\label{lemma-quasi-coherence-direct-image}
Let $S$ be a scheme. Let $f : X \to Y$ be a quasi-separated and quasi-compact
morphism of algebraic spaces over $S$.
\begin{enumerate}
\item The functor $Rf_*$ sends $D_\QCoh(\mathcal{O}_X)$
into $D_\QCoh(\mathcal{O}_Y)$.
\item If $Y$ is quasi-compact, there exists an integer $N = N(X, Y, f)$
such that for an object $E$ of $D_\QCoh(\mathcal{O}_X)$
with $H^m(E) = 0$ for $m > 0$ we have
$H^m(Rf_*E) = 0$ for $m > N$.
\item In fact, if $Y$ is quasi-compact we can find $N = N(X, Y, f)$
such that for every morphism of algebraic spaces $Y' \to Y$
the same conclusion holds for the functor $R(f')_*$
where $f' : X' \to Y'$ is the base change of $f$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $E$ be an object of $D_\QCoh(\mathcal{O}_X)$.
To prove (1) we have to show that $Rf_*E$ has quasi-coherent
cohomology sheaves. This question is local on $Y$, hence we may
assume $Y$ is quasi-compact. Pick $N = N(X, Y, f)$ as in
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-vanishing-higher-direct-images}.
Thus $R^pf_*\mathcal{F} = 0$ for all quasi-coherent $\mathcal{O}_X$-modules
$\mathcal{F}$ and all $p \geq N$. In particular, for any affine
object $V$ of $Y_\etale$ we have $H^p(V \times_Y X, \mathcal{F}) = 0$
for $p \geq N$, see
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-quasi-coherence-higher-direct-images-application}.
\medskip\noindent
Let $E$ be an object of $D_\QCoh(\mathcal{O}_X)$.
Choose $\mathcal{I}^\bullet = \lim \mathcal{I}_n^\bullet$
as in Lemma \ref{lemma-nice-K-injective}.
As $\mathcal{I}^\bullet$ is K-injective $Rf_*E$ is represented by
$f_*\mathcal{I}^\bullet = \lim f_*\mathcal{I}_n^\bullet$.
Let $V$ be an affine object of $Y_\etale$. The cohomology
$H^m(f_*\mathcal{I}_n^\bullet(V))$ of
$$
f_*\mathcal{I}_n^{m - 1}(V) \to
f_*\mathcal{I}_n^m(V) \to
f_*\mathcal{I}_n^{m + 1}(V)
$$
is equal to $H^m(V \times_Y X, \tau_{\geq -n}E)$ because
$\mathcal{I}_n^\bullet$ is a bounded below complex of injectives
representing $\tau_{\geq -n}E$. We have a distinguished triangle
$$
H^{-n}(E)[n] \to \tau_{\geq -n}E \to \tau_{\geq - n + 1}E \to H^{-n}(E)[n + 1]
$$
in $D(\mathcal{O}_X)$. Since $H^{-n}(E)$ is quasi-coherent we have
$H^m(V \times_Y X, H^{-n}(E)[n]) = 0$ for $n + m \geq N$ by
our choice of $N$. Similarly, $H^m(V \times_Y X, H^{-n}(E)[n + 1]) = 0$
for $n + m + 1 \geq N$. We conclude that
$$
H^m(f_*\mathcal{I}_n^\bullet(V)) \to H^m(f_*\mathcal{I}_{n - 1}^\bullet(V))
$$
is an isomorphism for all $n \geq N - m$. Thus
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-inverse-limit-complexes}
applies to show that the $m$th cohomology sheaf of
$\lim f_*\mathcal{I}_n^\bullet$ agrees with the $m$th cohomology
sheaf of $f_*\mathcal{I}_n^\bullet$ for $n \geq N - m$. Since these
cohomology sheaves are quasi-coherent by
Cohomology of Spaces, Lemma \ref{spaces-cohomology-lemma-higher-direct-image}
we get (1).
\medskip\noindent
Finally, we show that (2) and (3) hold with our choice of $N$.
Namely, the stabilization proven above gives that $H^m(Rf_*E)$ is equal
to $H^m(Rf_*(\tau_{\geq -n}E))$ for all $n$ large enough which means we
can work with objects in $D^+(\mathcal{O}_X)$ in order to prove (2) and (3).
In this case we can for example use the spectral sequence
$$
R^pf_*H^q(E) \Rightarrow R^{p + q}f_*E
$$
(Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor})
and the vanishing of $R^pf_*H^q(E)$ for $p \geq N$ to conclude.
Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-pushforward-direct-sums}
Let $S$ be a scheme. Let $f : X \to Y$ be a quasi-separated and
quasi-compact morphism of algebraic spaces over $S$. Then
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_S)$
commutes with direct sums.
\end{lemma}
\begin{proof}
Let $E_i$ be a family of objects of $D_\QCoh(\mathcal{O}_X)$
and set $E = \bigoplus E_i$. We want to show that the map
$$
\bigoplus Rf_*E_i \longrightarrow Rf_*E
$$
is an isomorphism. We will show it induces an isomorphism on
cohomology sheaves in degree $0$ which will imply the lemma.
Choose an integer $N$ as in Lemma \ref{lemma-quasi-coherence-direct-image}.
Then $R^0f_*E = R^0f_*\tau_{\geq -N}E$ and
$R^0f_*E_i = R^0f_*\tau_{\geq -N}E_i$ by the lemma cited. Observe that
$\tau_{\geq -N}E = \bigoplus \tau_{\geq -N}E_i$.
Thus we may assume all of the $E_i$ have vanishing cohomology
sheaves in degrees $< -N$. Next we use the spectral sequences
$$
R^pf_*H^q(E) \Rightarrow R^{p + q}f_*E
\quad\text{and}\quad
R^pf_*H^q(E_i) \Rightarrow R^{p + q}f_*E_i
$$
(Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor})
to reduce to the case of a direct sum of quasi-coherent sheaves.
This case is handled by
Cohomology of Spaces, Lemma \ref{spaces-cohomology-lemma-colimit-cohomology}.
\end{proof}
\begin{remark}
\label{remark-match-total-direct-images}
Let $S$ be a scheme. Let $f : X \to Y$ be a quasi-compact and quasi-separated
morphism of representable algebraic spaces $X$ and $Y$ over $S$.
Let $f_0 : X_0 \to Y_0$ be a morphism of schemes representing $f$
(awkward but temporary notation). Then we claim the diagrams
$$
\xymatrix{
D_\QCoh(\mathcal{O}_{X_0})
\ar[d]_{Rf_{0, *}} \ar@{=}[rrrrrr]_{\text{Lemma
\ref{lemma-derived-quasi-coherent-small-etale-site}}}
& & & & & &
D_\QCoh(\mathcal{O}_X) \ar[d]^{Rf_*} \\
D_\QCoh(\mathcal{O}_{Y_0})
\ar@{=}[rrrrrr]^{\text{Lemma
\ref{lemma-derived-quasi-coherent-small-etale-site}}}
& & & & & &
D_\QCoh(\mathcal{O}_Y)
}
$$
(Lemma \ref{lemma-quasi-coherence-direct-image} and
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-direct-image})
and
$$
\xymatrix{
D_\QCoh(\mathcal{O}_{X_0})
\ar@{=}[rrrrrr]_{\text{Lemma
\ref{lemma-derived-quasi-coherent-small-etale-site}}}
& & & & & &
D_\QCoh(\mathcal{O}_X) \\
D_\QCoh(\mathcal{O}_{Y_0})
\ar[u]^{Lf^*_0}
\ar@{=}[rrrrrr]^{\text{Lemma
\ref{lemma-derived-quasi-coherent-small-etale-site}}}
& & & & & &
D_\QCoh(\mathcal{O}_Y) \ar[u]_{Lf^*}
}
$$
(Lemma \ref{lemma-quasi-coherence-pullback}
and Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-pullback})
are commutative. The result for $Lf^*$ and $Lf_0^*$ follows as the
equivalences
$D_\QCoh(\mathcal{O}_{X_0}) \to D_\QCoh(\mathcal{O}_X)$
and
$D_\QCoh(\mathcal{O}_{Y_0}) \to D_\QCoh(\mathcal{O}_Y)$
of Lemma \ref{lemma-derived-quasi-coherent-small-etale-site}
come from pulling back by the (flat) morphisms of ringed sites
$\epsilon : X_\etale \to X_{0, Zar}$ and
$\epsilon : Y_\etale \to Y_{0, Zar}$
and the diagram of ringed sites
$$
\xymatrix{
X_{0, Zar} \ar[d]_{f_0} & X_\etale \ar[l]^\epsilon \ar[d]^f \\
Y_{0, Zar} & Y_\etale \ar[l]_\epsilon
}
$$
is commutative (details omitted). In fact the commutativity of the
first diagram also follows as the proof of Lemma
\ref{lemma-derived-quasi-coherent-small-etale-site}
shows that the functor $R\epsilon_*$ gives the equivalences
$D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_{X_0})$
and
$D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_{Y_0})$.
\end{remark}
\begin{lemma}
\label{lemma-affine-morphism}
Let $S$ be a scheme. Let $f : X \to Y$ be an affine morphism of algebraic
spaces over $S$. Then
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$
reflects isomorphisms.
\end{lemma}
\begin{proof}
The statement means that a morphism $\alpha : E \to F$ of
$D_\QCoh(\mathcal{O}_X)$ is an isomorphism if
$Rf_*\alpha$ is an isomorphism. We may check this on cohomology sheaves.
In particular, the question is \'etale local on $Y$. Hence we may assume
$Y$ and therefore $X$ is affine. In this case the problem reduces to the
case of schemes
(Derived Categories of Schemes, Lemma \ref{perfect-lemma-affine-morphism})
via Lemma \ref{lemma-derived-quasi-coherent-small-etale-site} and
Remark \ref{remark-match-total-direct-images}.
\end{proof}
\begin{lemma}
\label{lemma-affine-morphism-pull-push}
Let $S$ be a scheme. Let $f : X \to Y$ be an affine morphism of algebraic
spaces over $S$. For $E$ in $D_\QCoh(\mathcal{O}_Y)$ we have
$Rf_* Lf^* E = E \otimes^\mathbf{L}_{\mathcal{O}_Y} f_*\mathcal{O}_X$.
\end{lemma}
\begin{proof}
Since $f$ is affine the map $f_*\mathcal{O}_X \to Rf_*\mathcal{O}_X$
is an isomorphism (Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-affine-vanishing-higher-direct-images}).
There is a canonical map
$E \otimes^\mathbf{L} f_*\mathcal{O}_X =
E \otimes^\mathbf{L} Rf_*\mathcal{O}_X \to Rf_* Lf^* E$
adjoint to the map
$$
Lf^*(E \otimes^\mathbf{L} Rf_*\mathcal{O}_X) =
Lf^*E \otimes^\mathbf{L} Lf^*Rf_*\mathcal{O}_X \longrightarrow
Lf^* E \otimes^\mathbf{L} \mathcal{O}_X = Lf^* E
$$
coming from $1 : Lf^*E \to Lf^*E$ and the canonical map
$Lf^*Rf_*\mathcal{O}_X \to \mathcal{O}_X$. To check the map so constructed
is an isomorphism we may work locally on $Y$. Hence we may assume
$Y$ and therefore $X$ is affine. In this case the problem reduces to the
case of schemes
(Derived Categories of Schemes, Lemma
\ref{perfect-lemma-affine-morphism-pull-push})
via Lemma \ref{lemma-derived-quasi-coherent-small-etale-site} and
Remark \ref{remark-match-total-direct-images}.
\end{proof}
\section{Derived category of coherent modules}
\label{section-derived-coherent}
\noindent
Let $S$ be a scheme. Let $X$ be a locally Noetherian algebraic space over $S$.
In this case the category
$\textit{Coh}(\mathcal{O}_X) \subset \textit{Mod}(\mathcal{O}_X)$
of coherent $\mathcal{O}_X$-modules is a weak Serre subcategory, see
Homology, Section \ref{homology-section-serre-subcategories}
and
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-coherent-abelian-Noetherian}.
Denote
$$
D_{\textit{Coh}}(\mathcal{O}_X) \subset D(\mathcal{O}_X)
$$
the subcategory of complexes whose cohomology sheaves are coherent, see
Derived Categories, Section \ref{derived-section-triangulated-sub}.
Thus we obtain a canonical functor
\begin{equation}
\label{equation-compare-coherent}
D(\textit{Coh}(\mathcal{O}_X))
\longrightarrow
D_{\textit{Coh}}(\mathcal{O}_X)
\end{equation}
see Derived Categories, Equation (\ref{derived-equation-compare}).
\begin{lemma}
\label{lemma-direct-image-coherent}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Assume $f$ is locally of finite type and $Y$ is Noetherian.
Let $E$ be an object of $D^b_{\textit{Coh}}(\mathcal{O}_X)$ such that the
scheme theoretic support of $H^i(E)$ is proper over $Y$ for all $i$.
Then $Rf_*E$ is an object of $D^b_{\textit{Coh}}(\mathcal{O}_Y)$.
\end{lemma}
\begin{proof}
Consider the spectral sequence
$$
R^pf_*H^q(E) \Rightarrow R^{p + q}f_*E
$$
see Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}.
By assumption and
Cohomology of Spaces, Remark
\ref{spaces-cohomology-remark-scheme-theoretic-support-proper}
the sheaves $R^pf_*H^q(E)$ are coherent. Hence
$R^{p + q}f_*E$ is coherent, i.e., $E \in D_{\textit{Coh}}(\mathcal{O}_S)$.
Boundedness from below is trivial. Boundedness from above
follows from
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-vanishing-higher-direct-images}
or from
Lemma \ref{lemma-quasi-coherence-direct-image}.
\end{proof}
\section{Induction principle}
\label{section-induction}
\noindent
In this section we discuss an induction principle for algebraic spaces
analogues to what is
Cohomology of Schemes, Lemma \ref{lemma-induction-principle}
for schemes. To formulate it we introduce the notion of an
{\it elementary distinguished square}; this terminology is borrowed
from \cite{MV}.
The principle as formulated here is implicit in the paper \cite{GruRay}
by Raynaud and Gruson.
A related principle for algebraic stacks is
\cite[Theorem D]{rydh_etale_devissage} by David Rydh.
\begin{definition}
\label{definition-elementary-distinguished-square}
Let $S$ be a scheme. A commutative diagram
$$
\xymatrix{
U \times_W V \ar[r] \ar[d] & V \ar[d]^f \\
U \ar[r]^j & W
}
$$
of algebraic spaces over $S$ is called an {\it elementary distinguished square}
if
\begin{enumerate}
\item $U$ is an open subspace of $W$ and $j$ is the inclusion morphism,
\item $f$ is \'etale, and
\item setting $T = W \setminus U$ (with reduced induced
subspace structure) the morphism $f^{-1}(T) \to T$ is an isomorphism.
\end{enumerate}
We will indicate this by saying: ``Let $(U \subset W, f : V \to W)$
be an elementary distinguished square.''
\end{definition}
\noindent
Note that if $(U \subset W, f : V \to W)$ is an elementary distinguished
square, then we have $W = U \cup f(V)$. Thus $\{U \to W, V \to W\}$ is
an \'etale covering of $W$. It turns out that these \'etale coverings
have nice properties and that in some sense
there are ``enough'' of them.
\begin{lemma}
\label{lemma-make-more-elementary-distinguished-squares}
Let $S$ be a scheme. Let $(U \subset W, f : V \to W)$ be an elementary
distinguished square of algebraic spaces over $S$.
\begin{enumerate}
\item If $V' \subset V$ and
$U \subset U' \subset W$ are open subspaces and $W' = U' \cup f(V')$
then $(U' \subset W', f|_{V'} : V' \to W')$ is an elementary distinguished
square.
\item If $p : W' \to W$ is a morphism of algebraic spaces, then
$(p^{-1}(U) \subset W', V \times_W W' \to W')$ is an elementary distinguished
square.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-induction-principle}
Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated
algebraic space over $S$. Let $P$ be a property of the quasi-compact
and quasi-separated objects of $X_{spaces, \etale}$. Assume that
\begin{enumerate}
\item $P$ holds for every affine object of $X_{spaces, \etale}$,
\item for every elementary distinguished square $(U \subset W, f : V \to W)$
such that
\begin{enumerate}
\item $W$ is a quasi-compact and quasi-separated object of
$X_{spaces, \etale}$,
\item $U$ is quasi-compact,
\item $V$ is affine, and
\item $P$ holds for $U$, $V$, and $U \times_W V$,
\end{enumerate}
then $P$ holds for $W$.
\end{enumerate}
Then $P$ holds for every quasi-compact and quasi-separated object
of $X_{spaces, \etale}$ and in particular for $X$.
\end{lemma}
\begin{proof}
We first claim that $P$ holds for every representable
quasi-compact and quasi-separated object of $X_{spaces, \etale}$.
Namely, suppose that $U \to X$ is \'etale and $U$ is a
quasi-compact and quasi-separated scheme. By assumption (1)
property $P$ holds for every affine open of $U$. Moreover, if
$W, V \subset U$ are quasi-compact open with $V$ affine and $P$ holds for
$W$, $V$, and $W \cap V$, then $P$ holds for $W \cup V$ by (2)
(as the pair $(W \subset W \cup V, V \to W \cup V)$ is an elementary
distinguished square). Thus $P$ holds for $U$ by the induction
principle for schemes, see
Cohomology of Schemes, Lemma \ref{coherent-lemma-induction-principle}.
\medskip\noindent
To finish the proof it suffices to prove $P$ holds for $X$
(because we can simply replace $X$ by any quasi-compact and quasi-separated
object of $X_{spaces, \etale}$ we want to prove the result for).
We will use the filtration
$$
\emptyset = U_{n + 1} \subset
U_n \subset U_{n - 1} \subset \ldots \subset U_1 = X
$$
and the morphisms $f_p : V_p \to U_p$ of
Decent Spaces, Lemma
\ref{decent-spaces-lemma-filter-quasi-compact-quasi-separated}.
We will prove that $P$ holds for $U_p$ by descending induction on $p$.
Note that $P$ holds for $U_{n + 1}$ by (1)
as an empty algebraic space is affine. Assume $P$ holds for $U_{p + 1}$.
Note that $(U_{p + 1} \subset U_p, f_p : V_p \to U_p)$ is an elementary
distinguished square, but (2) may not apply as $V_p$ may not be affine.
However, as $V_p$ is a quasi-compact scheme we may choose a finite affine open
covering $V_p = V_{p, 1} \cup \ldots \cup V_{p, m}$.
Set $W_{p, 0} = U_{p + 1}$ and
$$
W_{p, i} = U_{p + 1} \cup f_p(V_{p, 1} \cup \ldots \cup V_{p, i})
$$
for $i = 1, \ldots, m$. These are quasi-compact open subspaces of $X$.
Then we have
$$
U_{p + 1} = W_{p, 0} \subset
W_{p, 1} \subset \ldots \subset
W_{p, m} = U_p
$$
and the pairs
$$
(W_{p, 0} \subset W_{p, 1}, f_p|_{V_{p, 1}}),
(W_{p, 1} \subset W_{p, 2}, f_p|_{V_{p, 2}}),\ldots,
(W_{p, m - 1} \subset W_{p, m}, f_p|_{V_{p, m}})
$$
are elementary distinguished squares by
Lemma \ref{lemma-make-more-elementary-distinguished-squares}.
Note that $P$ holds for each $V_{p, 1}$ (as affine schemes) and for
$W_{p, i} \times_{W_{p, i + 1}} V_{p, i + 1}$ as this is a quasi-compact
open of $V_{p, i + 1}$ and hence $P$ holds for it by the first paragraph
of this proof. Thus (2) applies to each of these and we inductively
conclude $P$ holds for $W_{p, 1}, \ldots, W_{p, m} = U_p$.
\end{proof}
\begin{lemma}
\label{lemma-induction-principle-separated}
Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated
algebraic space over $S$. Let
$\mathcal{B} \subset \Ob(X_{spaces, \etale})$.
Let $P$ be a property of the elements of $\mathcal{B}$.
Assume that
\begin{enumerate}
\item every $W \in \mathcal{B}$ is quasi-compact and quasi-separated,
\item if $W \in \mathcal{B}$ and $U \subset W$ is quasi-compact open, then
$U \in \mathcal{B}$,
\item if $V \in \Ob(X_{spaces, \etale})$ is affine, then
(a) $V \in \mathcal{B}$ and (b) $P$ holds for $V$,
\item for every elementary distinguished square $(U \subset W, f : V \to W)$
such that
\begin{enumerate}
\item $W \in \mathcal{B}$,
\item $U$ is quasi-compact,
\item $V$ is affine, and