forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
more-algebra.tex
21738 lines (19710 loc) · 806 KB
/
more-algebra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{More on Algebra}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we prove some results in commutative algebra which
are less elementary than those in the first chapter on commutative
algebra, see
Algebra, Section \ref{algebra-section-introduction}.
A reference is \cite{MatCA}.
\section{Advice for the reader}
\label{section-advice}
\noindent
More than in the chapter on commutative algebra, each of the sections in
this chapter stands on its own. Starting with
Section \ref{section-derived-modules}
we freely use the (unbounded) derived category of modules over rings and all
the machinery that comes with it.
\section{A comment on the Artin-Rees property}
\label{section-artin-rees}
\noindent
Some of this material is taken from \cite{conrad-dejong}. A general
discussion with additional references can be found in
\cite[Section 1]{Eis}.
\medskip\noindent
Let $A$ be a Noetherian ring and let $I \subset A$ be an ideal. Given a
homomorphism $f : M \to N$ of finite $A$-modules there exists a $c \geq 0$
such that
$$
f(M) \cap I^nN \subset f(I^{n - c}M)
$$
for all $n \geq c$, see Algebra, Lemma \ref{algebra-lemma-map-AR}. In this
situation we will say {\it $c$ works for $f$ in the Artin-Rees lemma}.
\begin{lemma}
\label{lemma-approximate-complex}
Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal contained in
the Jacobson radical of $A$. Let
$$
S : L \xrightarrow{f} M \xrightarrow{g} N
\quad\text{and}\quad
S' : L \xrightarrow{f'} M \xrightarrow{g'} N
$$
be two complexes of finite $A$-modules as shown. Assume that
\begin{enumerate}
\item $c$ works in the Artin-Rees lemma for $f$ and $g$,
\item the complex $S$ is exact, and
\item $f' = f \bmod I^{c + 1}M$ and $g' = g \bmod I^{c + 1}N$.
\end{enumerate}
Then $c$ works in the Artin-Rees lemma for $g'$ and the
complex $S'$ is exact.
\end{lemma}
\begin{proof}
We first show that $g'(L) \cap I^nM \subset g'(I^{n - c}L)$ for $n \geq c$.
Let $a$ be an element of $M$ such that $g'(a) \in I^nN$. We want to
adjust $a$ by an element of $f'(L)$, i.e, without changing $g'(a)$, so
that $a \in I^{n-c}M$. Assume that $a \in I^rM$, where $r < n - c$.
Then
$$
g(a) = g'(a) + (g - g')(a) \in
I^n N + I^{r + c + 1}N = I^{r + c + 1}N.
$$
By Artin-Rees for $g$ we have $g(a) \in g(I^{r + 1}M)$. Say $g(a) = g(a_1)$
with $a_1 \in I^{r + 1}M$. Since the sequence $S$ is exact, $a - a_1 \in f(L)$.
Accordingly, we write $a = f(b) + a_1$ for some $b \in L$.
Then $f(b) = a - a_1 \in I^rM$. Artin-Rees for $f$ shows that
if $r \geq c$, we may replace $b$ by an element of $I^{r - c}L$.
Then in all cases, $a = f'(b) + a_2$, where
$a_2 = (f - f')(b) + a_1 \in I^{r + 1}M$. (Namely, either $c \geq r$
and $(f - f')(b) \in I^{r + 1}M$ by assumption, or $c < r$ and
$b \in I^{r - c}$, whence again $(f - f')(b) \in I^{c + 1} I^{r - c} M =
I^{r + 1}M$.) So we can adjust $a$ by the element $f'(b) \in f'(L)$ to
increase $r$ by $1$.
\medskip\noindent
In fact, the argument above shows that
$(g')^{-1}(I^nM) \subset f'(L) + I^{n - c}M$ for all $n \geq c$.
Hence $S'$ is exact because
$$
(g')^{-1}(0) = (g')^{-1}(\bigcap I^nN) \subset
\bigcap f'(L) + I^{n - c}M = f'(L)
$$
as $I \subset \text{rad}(A)$, see Algebra, Lemma
\ref{algebra-lemma-intersection-powers-ideal-module}.
\end{proof}
\noindent
Given an ideal $I \subset A$ of a ring $A$ and an $A$-module $M$
we set
$$
\text{Gr}_I(M) = \bigoplus I^nM/I^{n + 1}M.
$$
We think of this as a graded $\text{Gr}_I(A)$-module.
\begin{lemma}
\label{lemma-approximate-complex-graded}
Assumptions as in Lemma \ref{lemma-approximate-complex}.
Let $Q = \Coker(g)$ and $Q' = \Coker(g')$. Then
$\text{Gr}_I(Q) \cong \text{Gr}_I(Q')$
as graded $\text{Gr}_I(A)$-modules.
\end{lemma}
\begin{proof}
In degree $n$ we have
$\text{Gr}_I(Q)_n = I^nN/(I^{n + 1}N + g(M) \cap I^nN)$
and similarly for $Q'$. We claim that
$$
g(M) \cap I^nN \subset I^{n + 1}N + g'(M) \cap I^nN.
$$
By symmetry (the proof of the claim will only use that $c$ works
for $g$ which also holds for $g'$ by the lemma) this will imply that
$$
I^{n + 1}N + g(M) \cap I^nN = I^{n + 1}N + g'(M) \cap I^nN
$$
whence $\text{Gr}_I(Q)_n$ and $\text{Gr}_I(Q')_n$ agree as subquotients
of $N$, implying the lemma. Observe that the claim is clear for
$n \leq c$ as $f = f' \bmod I^{c + 1}N$. If $n > c$, then suppose
$b \in g(M) \cap I^nN$. Write $b = g(a)$ for $a \in I^{n - c}M$.
Set $b' = g'(a)$. We have $b - b' = (g - g')(a) \in I^{n + 1}N$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-works-flat-extension}
Let $A \to B$ be a flat map of Noetherian rings. Let $I \subset A$ be
an ideal. Let $f : M \to N$ be a homomorphism of finite $A$-modules.
Assume that $c$ works for $f$ in the Artin-Rees lemma. Then $c$ works for
$f \otimes 1 : M \otimes_A B \to N \otimes_A B$ in the Artin-Rees lemma
for the ideal $IB$.
\end{lemma}
\begin{proof}
Note that
$$
(f \otimes 1)(M) \cap I^n N \otimes_A B
= (f \otimes 1)\left((f \otimes 1)^{-1}(I^n N \otimes_A B)\right)
$$
On the other hand,
\begin{align*}
(f \otimes 1)^{-1}(I^n N \otimes_A B) &
= \Ker(M \otimes_A B \to N \otimes_A B/(I^n N \otimes_A B)) \\
& =
\Ker(M \otimes_A B \to (N/I^nN) \otimes_A B)
\end{align*}
As $A \to B$ is flat taking kernels and cokernels commutes with
tensoring with $B$, whence this is equal to
$f^{-1}(I^nN) \otimes_A B$. By assumption $f^{-1}(I^nN)$ is contained in
$\Ker(f) + I^{n - c}M$. Thus the lemma holds.
\end{proof}
\section{Fibre products of rings}
\label{section-fibre-products-rings}
\noindent
Fibre products of rings have to do with pushouts of schemes. A special
case of pushouts of schemes is discussed in
More on Morphisms, Section \ref{more-morphisms-section-pushouts}.
\begin{lemma}
\label{lemma-fibre-product-finite-type}
Let $R$ be a ring. Let $A \to B$ and $C \to B$ be $R$-algebra maps.
Assume
\begin{enumerate}
\item $R$ is Noetherian,
\item $A$, $B$, $C$ are of finite type over $R$,
\item $A \to B$ is surjective, and
\item $B$ is finite over $C$.
\end{enumerate}
Then $A \times_B C$ is of finite type over $R$.
\end{lemma}
\begin{proof}
Set $D = A \times_B C$. There is a commutative diagram
$$
\xymatrix{
0 \ar[r] &
I \ar[r] &
A \ar[r] &
B \ar[r] &
0 \\
0 \ar[r] &
I \ar[r] \ar[u] &
D \ar[r] \ar[u] &
C \ar[r] \ar[u] &
0
}
$$
with exact rows. Choose $y_1, \ldots, y_n \in B$ which are generators for
$B$ as a $C$-module. Choose $x_i \in A$ mapping to $y_i$.
Then $1, x_1, \ldots, x_n$ are generators for $A$ as a $D$-module.
The map $D \to A \times C$ is injective, and the ring $A \times C$ is finite
as a $D$-module (because it is the direct sum of the finite $D$-modules
$A$ and $C$). Hence the lemma follows from the Artin-Tate lemma
(Algebra, Lemma \ref{algebra-lemma-Artin-Tate}).
\end{proof}
\begin{lemma}
\label{lemma-formal-consequence}
Let $R$ be a Noetherian ring. Let $I$ be a finite set. Suppose given a
cartesian diagram
$$
\xymatrix{
P \ar[d] \ar[r] & \prod A_i \ar[d]^{\prod \varphi_i} \\
Q \ar[r]^{\prod \psi_i} & \prod B_i
}
$$
with $\psi_i$ and $\varphi_i$ surjective, and $Q$, $A_i$, $B_i$ of
finite type over $R$. Then $P$ is of finite type over $R$.
\end{lemma}
\begin{proof}
Follows from Lemma \ref{lemma-fibre-product-finite-type}
and induction on the size of $I$.
Namely, let $I = I' \amalg \{i_0\}$. Let $P'$ be the ring defined
by the diagram of the lemma using $I'$. Then $P'$ is of finite type
by the lemma. Finally, $P$ sits in a fibre product diagram
$$
\xymatrix{
P \ar[d] \ar[r] & A_{i_0} \ar[d] \\
P' \ar[r] & B_{i_0}
}
$$
to which the lemma applies.
\end{proof}
\begin{lemma}
\label{lemma-diagram-localize}
Suppose given a cartesian diagram of rings
$$
\xymatrix{
B \ar[r]_s & R \\
B'\ar[u] \ar[r] & R', \ar[u]_t
}
$$
i.e., $B' = B \times_R R'$. If $h \in B'$ corresponds to $g \in B$
and $f \in R'$ such that $s(g) = t(f)$, then the diagram
$$
\xymatrix{
B_g \ar[r]_-s & R_{s(g)} = R_{t(f)} \\
(B')_h \ar[u] \ar[r] & (R')_f \ar[u]_t
}
$$
is cartesian too.
\end{lemma}
\begin{proof}
Note that $B' = \{(b, r') \in B \times R' \mid s(b) = t(r')\}$.
So $h = (g, f) \in B'$. First we show that $(B')_h$ maps
injectively into $B_g \times (R')_f$. Namely, suppose that
$(x, y)/h^n$ maps to zero. This means that
$g^Nx = 0$ for some $N$ and $f^My$ is zero for some $M$.
Thus $h^{\max(N, M)}(x, y) = 0$ in $B'$ and hence $(x, y)/h^n = 0$
in $B'_h$.
Next, suppose that $x/g^n$ and $y/f^m$ are elements
which map to the same element of $R_{s(g)}$.
This means that $s(g)^N(t(f)^ms(x) - s(g)^nt(y)) = 0$ in $R'$
for some $N \gg 0$. We can rewrite this as
$s(g^{m + N}x) = t(f^{n + N}y)$. Hence we see that the
pair $(x/g^n, y/f^m)$ is the image of the element
$(g^{m + N}x, f^{n + N}y)/h^{n + m + N}$ of
$(B')_h$.
\end{proof}
\begin{situation}
\label{situation-module-over-fibre-product}
In the following we will consider ring maps
$$
\xymatrix{
B \ar[r] & A & A' \ar[l]
}
$$
where we assume $A' \to A$ is surjective with kernel $I$.
In this situation we set $B' = B \times_A A'$ to
obtain a cartesian square
$$
\xymatrix{
A & A' \ar[l] \\
B \ar[u] & B' \ar[l] \ar[u]
}
$$
We'd like to understand $B'$-modules in terms of modules over $A'$, $A$,
and $B$. In order to do this we consider the functor (where the
fibre product of categories as constructed in
Categories, Example \ref{categories-example-2-fibre-product-categories})
\begin{equation}
\label{equation-functor}
\text{Mod}_{B'} \longrightarrow
\text{Mod}_B \times_{\text{Mod}_A} \text{Mod}_{A'},\quad
L' \longmapsto (L' \otimes_{B'} B, L' \otimes_{B'} A', can)
\end{equation}
where $can$ is the canonical identification
$L' \otimes_{B'} B \otimes_B A = L' \otimes_{B'} A' \otimes_{A'} A$.
In the following we will write $(N, M', \varphi)$ for an object
of the right hand side, i.e., $N$ is a $B$-module, $M'$ is an $A'$-module
and $\varphi : N \otimes_B A \to M' \otimes_{A'} A$ is an isomorphism.
However, it is often more convenient think of $\varphi$ as a $B$-linear
map $\varphi : N \to M'/IM'$ which induces an isomorphism
$N \otimes_B A \to M' \otimes_{A'} A = M'/IM'$.
\end{situation}
\begin{lemma}
\label{lemma-module-over-fibre-product}
In Situation \ref{situation-module-over-fibre-product}
the functor (\ref{equation-functor}) has a right adjoint, namely
the functor
$$
F : (N, M', \varphi) \longmapsto N \times_{\varphi, M} M'
$$
where $M = M'/IM'$. Moreover, the composition of $F$ with
(\ref{equation-functor}) is the identity functor on
$\text{Mod}_B \times_{\text{Mod}_A} \text{Mod}_{A'}$. In other words,
setting $N' = N \times_{\varphi, M} M'$ we have
$N' \otimes_{B'} B = N$ and $N' \otimes_{B'} A' = M'$.
\end{lemma}
\begin{proof}
The adjointness statement is that for a $B'$-module $L'$ and
a triple $(N, M', \varphi)$ we have
$$
\Hom_{B'}(L', N \times_{\varphi, M} M') =
\Hom_B(L' \otimes_{B'} B, N)
\times_{\Hom_A(L' \otimes_{B'} A, M)}
\Hom_{A'}(L' \otimes_{B'} A', M')
$$
This follows from
Algebra, Lemma \ref{algebra-lemma-adjoint-tensor-restrict}
and the fact that an element of the left hand side is given by a pair
of $B'$-linear maps $L' \to N$ and $L' \to M'$ agreeing as maps to $M$.
To prove the final assertion, recall that
$B' = B \times_A A'$ and $N' = N \times_{\varphi, M} M'$ and extend
these equalities to
$$
\vcenter{
\xymatrix{
A & A' \ar[l] & I \ar[l] \\
B \ar[u] & B' \ar[l] \ar[u] & J \ar[l] \ar[u]
}
}
\quad\text{and}\quad
\vcenter{
\xymatrix{
M & M' \ar[l] & K \ar[l] \\
N \ar[u]_\varphi & N' \ar[l] \ar[u] & L \ar[l] \ar[u]
}
}
$$
where $I, J, K, L$ are the kernels of the horizontal maps of the original
diagrams. We present the proof as a sequence of observations:
\begin{enumerate}
\item $K = IM'$ (see statement lemma),
\item $B' \to B$ is surjective with kernel $J$ and $J \to I$ is bijective,
\item $N' \to N$ is surjective with kernel $L$ and $L \to K$ is bijective,
\item $JN' \subset L$,
\item $\Im(N \to M)$ generates $M$ as an $A$-module
(because $N \otimes_B A = M$),
\item $\Im(N' \to M')$ generates $M'$ as an $A'$-module
(because it holds modulo $K$ and $L$ maps isomorphically to $K$),
\item $JN' = L$ (because $L \cong K = I M'$
is generated by images of elements $x n'$ with $x \in I$ and
$n' \in N'$ by the previous statement),
\item $N' \otimes_{B'} B = N$ (because $N = N'/L$, $B = B'/J$, and
the previous statement),
\item there is a map $\gamma : N' \otimes_{B'} A' \to M'$,
\item $\gamma$ is surjective (see above),
\item the kernel of the composition $N' \otimes_{B'} A' \to M' \to M$
is generated by elements $l \otimes 1$ and $n' \otimes x$ with
$l \in K$, $n' \in N'$, $x \in I$ (because $M = N \otimes_B A$ by assumption
and because $N' \to N$ and $A' \to A$ are surjective with kernels
$L$ and $I$),
\item any element of $N' \otimes_{B'} A'$ in the submodule generated
by the elements $l \otimes 1$ and $n' \otimes x$ with
$l \in L$, $n' \in N'$, $x \in I$ can be written as $l \otimes 1$
for some $l \in L$ (because $J$ maps isomorphically to $I$ we see
that $n' \otimes x = n'x \otimes 1$ in $N' \otimes_{B'} A'$;
similarly $x n' \otimes a' = n' \otimes xa' = n'(xa') \otimes 1$
in $N' \otimes_{B'} A'$ when $n' \in N'$, $x \in J$ and $a' \in A'$;
since we have seen that $JN' = L$ this proves the assertion),
\item the kernel of $\gamma$ is zero (because by (10) and (11) any element of
the kernel is of the form $l \otimes 1$ with $l \in L$ which
is mapped to $l \in K \subset M'$ by $\gamma$).
\end{enumerate}
This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-module-over-fibre-product-bis}
In the situation of Lemma \ref{lemma-module-over-fibre-product}
for a $B'$-module $L'$ the adjunction map
$$
L' \longrightarrow
(L' \otimes_{B'} B) \times_{(L' \otimes_{B'} A)} (L' \otimes_{B'} A')
$$
is surjective but in general not injective.
\end{lemma}
\begin{proof}
As in the proof of Lemma \ref{lemma-module-over-fibre-product}
let $J \subset B'$ be the kernel of the map $B' \to B$.
Then $L' \otimes_{B'} B = L'/JL'$. Hence to prove surjectivity it suffices
to show that elements of the form $(0, z)$ of the fibre product are in the
image of the map of the lemma. The kernel of the map
$L' \otimes_{B'} A' \to L' \otimes_{B'} A$ is the image of
$L' \otimes_{B'} I \to L' \otimes_{B'} A'$. Since the map $J \to I$
induced by $B' \to A'$ is an isomorphism
the composition
$$
L' \otimes_{B'} J \to L' \to
(L' \otimes_{B'} B) \times_{(L' \otimes_{B'} A)} (L' \otimes_{B'} A')
$$
induces a surjection of $L' \otimes_{B'} J$ onto the set of elements
of the form $(0, z)$. To see the map is not injective in general we
present a simple example. Namely, take a field $k$,
set $B' = k[x, y]/(xy)$, $A = B'/(x)$, $B = B'/(y)$, $A = B'/(x, y)$
and $L' = B'/(x - y)$. In that case the class of $x$ in $L'$ is nonzero
but is mapped to zero under the displayed arrow.
\end{proof}
\begin{lemma}
\label{lemma-surjection-module-over-fibre-product}
In Situation \ref{situation-module-over-fibre-product}
let $(N_1, M'_1, \varphi_1) \to (N_2, M'_2, \varphi_2)$ be a morphism
of $\text{Mod}_B \times_{\text{Mod}_A} \text{Mod}_{A'}$
with $N_1 \to N_2$ and $M'_1 \to M'_2$ surjective. Then
$$
N_1 \times_{M_1} M'_1 \to N_2 \times_{M_2} M'_2
$$
is surjective.
\end{lemma}
\begin{proof}
Pick $(x_2, y_2) \in N_2 \times_{M_2} M'_2$. Choose $x_1 \in N_1$
mapping to $x_2$. Since $M'_1 \to M_1$ is surjective we can find
$y_1 \in M'_1$ mapping to $\varphi_1(x_1)$. Then $(x_1, y_1)$
maps to $(x_2, y'_2)$ in $N_2 \times_{M_2} M'_2$. Thus it suffices
to show that elements of the form $(0, y_2)$ are in the image of the map.
Here we see that $y_2 \in IM'_2$. Write $y_2 = \sum t_i y_{2, i}$
with $t_i \in I$. Choose $y_{1, i} \in M'_1$ mapping to $y_{2, i}$.
Then $y_1 = \sum t_iy_{1, i} \in IM'_1$ and the element $(0, y_1)$
does the job.
\end{proof}
\begin{situation}
\label{situation-relative-module-over-fibre-product}
Let $A, A', B, B', I$ be as in
Situation \ref{situation-module-over-fibre-product}.
Let $B' \to D'$ be a ring map. Set $D = D' \otimes_{B'} B$,
$C' = D' \otimes_{B'} A'$, and $C = D' \otimes_{B'} A$. This leads
to a big commutative diagram
$$
\xymatrix{
C & & & C' \ar[lll] \\
& A \ar[ul] & A' \ar[l] \ar[ru] \\
& B \ar[u] \ar[ld] & B' \ar[l] \ar[u] \ar[rd] \\
D \ar[uuu] & & & D' \ar[lll] \ar[uuu]
}
$$
of rings.
Observe that we do {\bf not} assume that the map $D' \to D \times_C C'$
is an isomorphism. In this situation we have the functor
\begin{equation}
\label{equation-relative-functor}
\text{Mod}_{D'} \longrightarrow
\text{Mod}_D \times_{\text{Mod}_C} \text{Mod}_{C'},\quad
L' \longmapsto (L' \otimes_{D'} D, L' \otimes_{D'} C', can)
\end{equation}
analogous to (\ref{equation-functor}). Note that
$L' \otimes_{D'} D = L \otimes_{D'} (D' \otimes_{B'} B) = L \otimes_{B'} B$
and similarly
$L' \otimes_{D'} C' = L \otimes_{D'} (D' \otimes_{B'} A') = L \otimes_{B'} A'$
hence the diagram
$$
\xymatrix{
\text{Mod}_{D'} \ar[r] \ar[d] &
\text{Mod}_D \times_{\text{Mod}_C} \text{Mod}_{C'} \ar[d] \\
\text{Mod}_{B'} \ar[r] &
\text{Mod}_B \times_{\text{Mod}_A} \text{Mod}_{A'}
}
$$
is commutative. In the following we will write $(N, M', \varphi)$ for an
object of $\text{Mod}_D \times_{\text{Mod}_C} \text{Mod}_{C'}$,
i.e., $N$ is a $D$-module, $M'$ is an $C'$-module
and $\varphi : N \otimes_B A \to M' \otimes_{A'} A$ is an isomorphism
of $C$-modules.
However, it is often more convenient think of $\varphi$ as a $D$-linear
map $\varphi : N \to M'/IM'$ which induces an isomorphism
$N \otimes_B A \to M' \otimes_{A'} A = M'/IM'$.
\end{situation}
\begin{lemma}
\label{lemma-relative-module-over-fibre-product}
In Situation \ref{situation-relative-module-over-fibre-product}
the functor (\ref{equation-relative-functor}) has a right adjoint, namely
the functor
$$
F : (N, M', \varphi) \longmapsto N \times_{\varphi, M} M'
$$
where $M = M'/IM'$. Moreover, the composition of $F$ with
(\ref{equation-relative-functor}) is the identity functor on
$\text{Mod}_D \times_{\text{Mod}_C} \text{Mod}_{C'}$. In other words,
setting $N' = N \times_{\varphi, M} M'$ we have
$N' \otimes_{D'} D = N$ and $N' \otimes_{D'} C' = M'$.
\end{lemma}
\begin{proof}
The adjointness statement is that for a $D'$-module $L'$ and
a triple $(N, M', \varphi)$ we have
$$
\Hom_{D'}(L', N \times_{\varphi, M} M') =
\Hom_D(L' \otimes_{D'} D, N)
\times_{\Hom_C(L' \otimes_{D'} C, M)}
\Hom_{C'}(L' \otimes_{D'} C', M')
$$
This follows from
Algebra, Lemma \ref{algebra-lemma-adjoint-tensor-restrict}
and the fact that an element of the left hand side is given by a pair
of $D'$-linear maps $L' \to N$ and $L' \to M'$ agreeing as maps to $M$.
The final assertion follows from the corresponding assertion of
Lemma \ref{lemma-module-over-fibre-product}.
\end{proof}
\begin{lemma}
\label{lemma-relative-surjection-ideals}
In Situation \ref{situation-relative-module-over-fibre-product}
the map $JD' \to IC'$ is surjective where $J = \Ker(B' \to B)$.
\end{lemma}
\begin{proof}
Since $C' = D' \otimes_{B'} A'$ we have that $IC'$ is the image
of $D' \otimes_{B'} I = C' \otimes_{A'} I \to C'$. As the ring
map $B' \to A'$ induces an isomorphism $J \to I$ the lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-relative-finite-module-over-fibre-product}
Let $A, A', B, B', C, C', D, D', I, M', M, N, \varphi$ be as in
Lemma \ref{lemma-relative-module-over-fibre-product}.
If $N$ finite over $D$ and $M'$
finite over $C'$, then $N' = N \times_M M'$ is finite over $D'$.
\end{lemma}
\begin{proof}
We will use the results of
Lemma \ref{lemma-relative-module-over-fibre-product}
without further mention. Choose generators $x_1, \ldots, x_r$ of $N$ over $B$
and generators $y_1, \ldots, y_s$ of $M'$ over $A'$. Using that
$N = N' \otimes_{D'} D$ and $D' \to D$ is surjective we can find
$u_1, \ldots, u_r \in N'$ mapping to $x_1, \ldots, x_r$ in $N$.
Using that $M' = N' \otimes_{D'} C'$ we can find $v_1, \ldots, v_t \in N'$
such that $y_i = \sum v_j \otimes c'_{ij}$ for some $c'_{ij} \in C'$.
In particular we see that the images $\overline{v}_j$ of the $v_j$ generate
$M'$ over $C'$. We claim that $u_1, \ldots, u_r, v_1, \ldots, v_t$
generate $N'$ as a $D'$-module. Namely, pick $\xi \in N'$. We first choose
$d'_1, \ldots, d'_r \in D'$ such that $\xi$ and $\sum d'_i u_i$ map
to the same element of $N$. This is possible because $D' \to D$
is surjective and $x_1, \ldots, x_r$ generate $N$.
The difference $\xi - \sum d'_i u_i$ is of the form $(0, \theta)$
for some $\theta$ in $IM'$. Say $\theta$ is $\sum t_j\overline{v}_j$
with $t_j \in IC'$. By Lemma \ref{lemma-relative-surjection-ideals}
we can choose $s_j \in JD'$ mapping to $t_j$.
Because $N' = N \times_M M'$ it follows
that $\xi = \sum b'_i u_i + \sum s_j v_j$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-relative-flat-module-over-fibre-product}
With $A, A', B, B', C, C', D, D', I$ as in
Situation \ref{situation-relative-module-over-fibre-product}.
\begin{enumerate}
\item Let $(N, M', \varphi)$ be an object of
$\text{Mod}_D \times_{\text{Mod}_C} \text{Mod}_{C'}$.
If $M'$ is flat over $A'$ and $N$ is flat over $B$, then
$N' = N \times_M M'$ is flat over $B'$.
\item If $L'$ is a $D'$-module flat over $B'$, then
$L' = (L \otimes_{D'} D) \times_{(L \otimes_{D'} C)} (L \otimes_{D'} C')$.
\item The category of $D'$-modules flat over $B'$
is equivalent to the categories of objects $(N, M', \varphi)$
of $\text{Mod}_D \times_{\text{Mod}_C} \text{Mod}_{C'}$
with $N$ flat over $B$ and $M'$ flat over $A'$.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). Let $J \subset B'$ be an ideal.
We have to show that $J \otimes_{B'} N' \to N'$
is injective, see Algebra, Lemma \ref{algebra-lemma-flat}. We know that
$$
J/(J \cap I) \otimes_{B'} N' = J/(J \cap I) \otimes_B N \to N
$$
is injective as $N$ is flat over $B$. As
$J \cap I \to J \to J/(J \cap I) \to 0$ is exact, we
conclude that it suffices to show that $(J \cap I) \otimes_{B'} N' \to N'$
is injective. Thus we may assume that $J \subset I$; in particular we can
think of $J$ as an $A'$-module and an ideal of $A'$ and
$$
J \otimes_{B'} N' = J \otimes_{A'} A' \otimes_{B'} N' =
J \otimes_{A'} M'
$$
which maps injectively into $M'$ by our assumption that $M'$ is flat
over $A'$. We conclude that $J \otimes_{B'} N' \to N' \to M'$ is injective
and hence the first map is injective as desired.
\medskip\noindent
Proof of (2). This follows by tensoring the short exact sequence
$0 \to B' \to B \oplus A' \to A \to 0$ with $L'$ over $B'$
and using that $L' \otimes_{D'} D = L' \otimes_{B'} B$,
$L' \otimes_{D'} C' = L' \otimes_{B'} A'$, and
$L' \otimes_{D'} C = L' \otimes_{B'} A$, see discussion in
Situation \ref{situation-relative-module-over-fibre-product}.
\medskip\noindent
Proof of (3). Immediate consequence of (1) and (2).
\end{proof}
\begin{lemma}
\label{lemma-relative-finitely-presented-module-over-fibre-product}
Let $A, A', B, B', C, C', D, D', I, M', M, N, \varphi$ be as in
Lemma \ref{lemma-relative-module-over-fibre-product}. If
\begin{enumerate}
\item $N$ is finitely presented over $D$ and flat over $B$,
\item $M'$ finitely presented over $C'$ and flat over $A'$, and
\item the ring map $B' \to D'$ factors as $B' \to D'' \to D''$
with $B' \to D''$ flat and $D'' \to D'$ of finite presentation,
\end{enumerate}
then $N' = N \times_M M'$ is finitely presented over $D'$.
\end{lemma}
\begin{proof}
Choose a surjection $D''' = D''[x_1, \ldots, x_n] \to D'$ with
finitely generated kernel $J$.
By Algebra, Lemma \ref{algebra-lemma-finite-finitely-presented-extension}
it suffices to show that $N'$ is finitely presented as a
$D'''$-module. Moreover, $D''' \otimes_{B'} B \to D' \otimes_{B'} B = D$
and $D''' \otimes_{B'} A' \to D' \otimes_{B'} A' = C'$ are surjections
whose kernels are generated by the image of $J$, hence $N$ is a
finitely presented $D''' \otimes_{B'} B$-module and
$M'$ is a finitely presented $D''' \otimes_{B'} A'$-module by
Algebra, Lemma \ref{algebra-lemma-finite-finitely-presented-extension}
again. Thus we may replace $D'$ by $D'''$ and $D$ by
$D''' \otimes_{B'} B$, etc. Since $D'''$ is
flat over $B'$, it follows that we may assume that $B' \to D'$ is flat.
\medskip\noindent
Assume $B' \to D'$ is flat.
By Lemma \ref{lemma-relative-finite-module-over-fibre-product}
the module $N'$ is finite over $D'$. Choose a surjection
$(D')^{\oplus n} \to N'$ with kernel $K'$. By base change we obtain maps
$D^{\oplus n} \to N$, $(C')^{\oplus n} \to M'$, and $C^{\oplus n} \to M$
with kernels $K_D$, $K_{C'}$, and $K_C$. There is a canonical map
$$
K' \longrightarrow K_D \times_{K_C} K_{C'}
$$
On the other hand, since $N' = N \times_M M'$ and
$D' = D \times_C C'$ (by
Lemma \ref{lemma-relative-flat-module-over-fibre-product})
there is also a
canonical map $K_D \times_{K_C} K_{C'} \to K'$ inverse to the displayed
arrow. Hence the displayed map is an isomorphism. By
Algebra, Lemma \ref{algebra-lemma-extension}
the modules $K_D$ and $K_{C'}$ are finite. We conclude from
Lemma \ref{lemma-relative-finite-module-over-fibre-product}
that $K'$ is a finite $D'$-module provided that $K_D \to K_C$ and
$K_{C'} \to K_C$ induce isomorphisms
$K_D \otimes_B A = K_C = K_{C'} \otimes_{A'} A$.
This is true because the flatness assumptions implies the sequences
$$
0 \to K_D \to D^{\oplus n} \to N \to 0
\quad\text{and}\quad
0 \to K_{C'} \to (C')^{\oplus n} \to M' \to 0
$$
stay exact upon tensoring, see
Algebra, Lemma \ref{algebra-lemma-flat-tor-zero}.
\end{proof}
\begin{lemma}
\label{lemma-properties-algebras-over-fibre-product}
Let $A, A', B, B', I$ be as in
Situation \ref{situation-module-over-fibre-product}.
Let $(D, C', \varphi)$ be a system consisting of an $B$-algebra $D$,
a $A'$-algebra $C'$ and an isomorphism $D \otimes_B A \to C'/IC = C$.
Set $D' = D \times_C C'$ (as in
Lemma \ref{lemma-module-over-fibre-product}). Then
\begin{enumerate}
\item $B' \to D'$ is finite type if and only if $B \to D$ and
$A' \to C'$ are finite type,
\item $B' \to D'$ is flat if and only if $B \to D$ and $A' \to C'$ are flat,
\item $B' \to D'$ is flat and of finite presentation if and only if
$B \to D$ and $A' \to C'$ are flat and of finite presentation,
\item $B' \to D'$ is smooth if and only if $B \to D$ and $A' \to C'$ are smooth,
\item $B' \to D'$ is \'etale if and only if $B \to D$ and $A' \to C'$
are \'etale.
\end{enumerate}
Moreover, if $D'$ is a flat $B'$-algebra, then
$D' \to (D' \otimes_{B'} B) \times_{(D' \otimes_{B'} A)} (D' \otimes_{B'} A')$
is an isomorphism. In this way the category of flat $B'$-algebras
is equivalent to the categories of systems $(D, C', \varphi)$ as above
with $D$ flat over $B$ and $C'$ flat over $A'$.
\end{lemma}
\begin{proof}
The implication ``$\Rightarrow$'' follows from
Algebra, Lemmas \ref{algebra-lemma-base-change-finiteness},
\ref{algebra-lemma-flat-base-change},
\ref{algebra-lemma-base-change-smooth}, and
\ref{algebra-lemma-etale} because we have
$D' \otimes_{B'} B = D$ and $D' \otimes_{B'} A' = C'$
by Lemma \ref{lemma-module-over-fibre-product}.
Thus it suffices to prove the implications in the other direction.
\medskip\noindent
Ad (1). Assume $D$ of finite type over $B$ and $C'$ of finite type over $A'$.
We will use the results of
Lemma \ref{lemma-module-over-fibre-product}
without further mention. Choose generators $x_1, \ldots, x_r$ of $D$ over $B$
and generators $y_1, \ldots, y_s$ of $C'$ over $A'$. Using that
$N = N' \otimes_{B'} B$ and $B' \to B$ is surjective we can find
$u_1, \ldots, u_r \in D'$ mapping to $x_1, \ldots, x_r$ in $D$.
Using that $C' = D' \otimes_{B'} A'$ we can find $v_1, \ldots, v_t \in D'$
such that $y_i = \sum v_j \otimes a'_{ij}$ for some $a'_{ij} \in A'$.
In particular, the images of $v_j$ in $C'$ generate $C'$ as an
$A'$-algebra. Set $N = r + t$ and consider the cube of rings
$$
\xymatrix{
A[x_1, \ldots, x_N] & & A'[x_1, \ldots, x_N] \ar[ll] \\
& A \ar[lu] & & A' \ar[ll] \ar[lu] \\
B[x_1, \ldots, x_N] \ar[uu] & & B'[x_1, \ldots, x_N] \ar[uu] \ar[ll] \\
& B \ar[uu] \ar[lu] & & B' \ar[ll] \ar[uu] \ar[lu]
}
$$
Observe that the back square is cartesian as well.
Consider the ring map
$$
B'[x_1, \ldots, x_N] \to D',\quad
x_i \mapsto u_i \quad\text{and}\quad x_{r + j} \mapsto v_j.
$$
Then we see that the induced maps $B[x_1, \ldots, x_N] \to D$ and
$A'[x_1, \ldots, x_N] \to C'$
are surjective, in particular finite. We conclude from
Lemma \ref{lemma-relative-finite-module-over-fibre-product}
that $B'[x_1, \ldots, x_N] \to D'$ is finite, which implies that $D'$
is of finite type over $B'$ for example by
Algebra, Lemma \ref{algebra-lemma-compose-finite-type}.
\medskip\noindent
Ad (2). The implication ``$\Leftarrow$'' follows from
Lemma \ref{lemma-relative-flat-module-over-fibre-product}.
Moreover, the final statement follows from the final
statement of Lemma \ref{lemma-relative-flat-module-over-fibre-product}.
\medskip\noindent
Ad (3). Assume $B \to D$ and $A' \to C'$ are flat and of finite presentation.
The flatness of $B' \to D'$ we've seen in (2). We know $B' \to D'$
is of finite type by (1). Choose a surjection $B'[x_1, \ldots, x_N] \to D'$.
By Algebra, Lemma \ref{algebra-lemma-finite-presentation-independent}
the ring $D$ is of finite presentation as a $B[x_1, \ldots, x_N]$-module
and the ring $C'$ is of finite presentation as a
$A'[x_1, \ldots, x_N]$-module. By
Lemma \ref{lemma-relative-finitely-presented-module-over-fibre-product}
we see that $D'$ is of finite presentation as a $B'[x_1, \ldots, x_N]$-module,
i.e., $B' \to D'$ is of finite presentation.
\medskip\noindent
Ad (4). Assume $B \to D$ and $A' \to C'$ smooth.
By (3) we see that $B' \to D'$ is flat and of finite presentation.
By Algebra, Lemma \ref{algebra-lemma-flat-fibre-smooth}
it suffices to check that $D' \otimes_{B'} k$ is smooth for any
field $k$ over $B'$. If the composition $J \to B' \to k$ is zero,
then $B' \to k$ factors as $B' \to B \to k$ and we see that
$$
D' \otimes_{B'} k = D' \otimes_{B'} B \otimes_B k
= D \otimes_B k
$$
is smooth as $B \to D$ is smooth. If the composition $J \to B' \to k$
is nonzero, then there exists an $h \in J$ which does not map to zero
in $k$. Then $B' \to k$ factors as $B' \to B'_h \to k$.
Observe that $h$ maps to zero in $B$, hence $B_h = 0$.
Thus by Lemma \ref{lemma-diagram-localize} we have $B'_h = A'_h$ and we get
$$
D' \otimes_{B'} k = D' \otimes_{B'} B'_h \otimes_{B'_h} k
= C'_h \otimes_{A'_h} k
$$
is smooth as $A' \to C'$ is smooth.
\medskip\noindent
Ad (5). Assume $B \to D$ and $A' \to C'$ are \'etale. By (4) we see that
$B' \to D'$ is smooth. As we can read off whether or not a smooth
map is \'etale from the dimension of fibres we see that (5) holds
(argue as in the proof of (4) to identify fibres -- some details omitted).
\end{proof}
\begin{remark}
\label{remark-relative-modules-over-fibre-product}
In Situation \ref{situation-relative-module-over-fibre-product}.
Assume $B' \to D'$ is of finite presentation and
suppose we are given a $D'$-module $L'$.
We claim there is a bijective correspondence between
\begin{enumerate}
\item surjections of $D'$-modules $L' \to Q'$ with $Q'$ of finite presentation
over $D'$ and flat over $B'$, and
\item pairs of surjections of modules
$(L' \otimes_{D'} D \to Q_1, L' \otimes_{D'} C' \to Q_2)$
with
\begin{enumerate}
\item $Q_1$ of finite presentation over $D$ and flat over $B$,
\item $Q_2$ of finite presentation over $C'$ and flat over $A'$,
\item $Q_1 \otimes_D C = Q_2 \otimes_{C'} C$ as quotients of
$L' \otimes_{D'} C$.
\end{enumerate}
\end{enumerate}
The correspondence between these is given by $Q \mapsto (Q_1, Q_2)$ with
$Q_1 = Q \otimes_{D'} D$ and $Q_2 = Q \otimes_{D'} C'$. And for the converse
we use $Q = Q_1 \times_{Q_{12}} Q_2$ where $Q_{12}$ the common quotient
$Q_1 \otimes_D C = Q_2 \otimes_{C'} C$ of $L' \otimes_{D'} C$. As quotient
map we use
$$
L' \longrightarrow
(L' \otimes_{D'} D) \times_{(L' \otimes_{D'} C)} (L' \otimes_{D'} C')
\longrightarrow Q_1 \times_{Q_{12}} Q_2 = Q
$$
where the first arrow is surjective by
Lemma \ref{lemma-module-over-fibre-product-bis}
and the second by Lemma \ref{lemma-surjection-module-over-fibre-product}.
The claim follows by
Lemmas \ref{lemma-relative-flat-module-over-fibre-product} and
\ref{lemma-relative-finitely-presented-module-over-fibre-product}.
\end{remark}
\section{Fitting ideals}
\label{section-fitting-ideals}
\noindent
The fitting ideals of a finite module are the ideals determined
by the construction of Lemma \ref{lemma-fitting-ideal}.
\begin{lemma}
\label{lemma-ideals-generated-by-minors}
Let $R$ be a ring. Let $A$ be an $n \times m$ matrix with coefficients
in $R$. Let $I_r(A)$ be the ideal generated by the $r \times r$-minors
of $A$ with the convention that $I_0(A) = R$ and $I_r(A) = 0$ if
$r > \min(n, m)$. Then
\begin{enumerate}
\item $I_0(A) \supset I_1(A) \supset I_2(A) \ldots$,
\item if $B$ is an $(n + n') \times m$ matrix, and $A$ is the first
$n$ rows of $B$, then $I_{r + n'}(B) \subset I_r(A)$,
\item if $C$ is an $n \times n$ matrix then $I_r(CA) \subset I_r(A)$.
\item If $A$ is a block matrix
$$
\left(
\begin{matrix}
A_1 & 0 \\
0 & A_2
\end{matrix}
\right)
$$
then $I_r(A) = \sum_{r_1 + r_2 = r} I_{r_1}(A_1) I_{r_2}(A_2)$.
\item Add more here.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. (Hint: Use that a determinant can be computed by expanding
along a column or a row.)
\end{proof}
\begin{lemma}
\label{lemma-fitting-ideal}
Let $R$ be a ring. Let $M$ be a finite $R$-module. Choose a presentation
$$
\bigoplus\nolimits_{j \in J} R \longrightarrow R^{\oplus n}
\longrightarrow M \longrightarrow 0.
$$
of $M$. Let $A = (a_{ij})_{i = 1, \ldots, n, j \in J}$ be the matrix
of the map $\bigoplus_{j \in J} R \to R^{\oplus n}$.
The ideal $\text{Fit}_k(M)$ generated by the
$(n - k) \times (n - k)$ minors of
$A$ is independent of the choice of the presentation.
\end{lemma}
\begin{proof}
Let $K \subset R^{\oplus n}$ be the kernel of the surjection
$R^{\oplus n} \to M$. Pick $z_1, \ldots, z_{n - k} \in K$
and write $z_j = (z_{1j}, \ldots, z_{nj})$.
Another description of the ideal $\text{Fit}_k(M)$
is that it is the ideal generated by the $(n - k) \times (n - k)$ minors of
all the matrices $(z_{ij})$ we obtain in this way.
\medskip\noindent
Suppose we change the surjection into the surjection
$R^{\oplus n + n'} \to M$ with kernel $K'$ where we use the original
map on the first $n$ standard basis elements of $R^{\oplus n + n'}$
and $0$ on the last $n'$ basis vectors. Then the corresponding ideals
are the same. Namely, if $z_1, \ldots, z_{n - k} \in K$ as above,
let $z'_j = (z_{1j}, \ldots, z_{nj}, 0, \ldots, 0) \in K'$ for
$j = 1, \ldots, n - k$ and
$z'_{n + j'} = (0, \ldots, 0, 1, 0, \ldots, 0) \in K'$. Then we see that
the ideal of $(n - k) \times (n - k)$ minors of $(z_{ij})$ agrees
with the ideal of $(n + n' - k) \times (n + n' - k)$ minors of
$(z'_{ij})$. This gives one of the inclusions.
Conversely, given $z'_1, \ldots, z'_{n + n' - k}$
in $K'$ we can project these to $R^{\oplus n}$ to get
$z_1, \ldots, z_{n + n' - k}$ in $K$. By
Lemma \ref{lemma-ideals-generated-by-minors}
we see that the ideal generated by the
$(n + n' - k) \times (n + n' - k)$ minors of
$(z'_{ij})$ is contained in the ideal generated by the
$(n - k) \times (n - k)$ minors of $(z_{ij})$. This gives the
other inclusion.
\medskip\noindent
Let $R^{\oplus m} \to M$ be another surjection with kernel $L$.
By the previous paragraph we may assume $m = n$.
By Algebra, Lemma \ref{algebra-lemma-lift-map} we can choose a map
$R^{\oplus n} \to R^{\oplus m}$ commuting with the surjections to $M$.
Let $C = (c_{li})$ be the matrix of this map (it is a square
matrix as $n = m$). Then given
$z_1, \ldots, z_{n - k} \in K$ as above we get
$Cz_1, \ldots, Cz_{n - k} \in L$. By
Lemma \ref{lemma-ideals-generated-by-minors} we get one of the
inclusions. By symmetry we get the other.
\end{proof}
\begin{definition}
\label{definition-fitting-ideal}
Let $R$ be a ring. Let $M$ be a finite $R$-module. Let $k \geq 0$.
The {\it $k$th fitting ideal} of $M$ is the ideal $\text{Fit}_k(M)$
constructed in Lemma \ref{lemma-fitting-ideal}. Set $\text{Fit}_{-1}(M) = 0$.
\end{definition}
\noindent
Since the fitting ideals are the ideals of minors of a big matrix
(numbered in reverse ordering from the ordering in
Lemma \ref{lemma-ideals-generated-by-minors})
we see that
$$
0 = \text{Fit}_{-1}(M) \subset \text{Fit}_0(M) \subset \text{Fit}_1(M)
\subset \ldots \subset \text{Fit}_t(M) = R
$$
for some $t \gg 0$. Here are some basic properties of fitting ideals.
\begin{lemma}
\label{lemma-fitting-ideal-basics}
Let $R$ be a ring. Let $M$ be a finite $R$-module.
\begin{enumerate}
\item If $M$ can be generated by $n$ elements, then
$\text{Fit}_n(M) = R$.
\item Given a second finite $R$-module $M'$ we have
$$
\text{Fit}_k(M \oplus M') =
\sum\nolimits_{k + k' = l} \text{Fit}_k(M)\text{Fit}_{k'}(M')
$$
\item If $R \to R'$ is a ring map, then $\text{Fit}_k(M \otimes_R R')$
is the ideal of $R'$ generated by the image of $\text{Fit}_k(M)$.
\item If $M$ is an $R$-module of finite presentation, then $\text{Fit}_k(M)$
is a finitely generated ideal.