forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
brauer.tex
806 lines (676 loc) · 27.1 KB
/
brauer.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Brauer groups}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
A reference are the lectures by Serre in the Seminaire Cartan, see
\cite{Serre-Cartan}. Serre in turn refers to
\cite{Deuring} and \cite{ANT}. We changed some of the proofs, in particular
we used a fun argument of Rieffel to prove Wedderburn's theorem.
Very likely this change is not an improvement and we strongly
encourage the reader to read the original exposition by Serre.
\section{Noncommutative algebras}
\label{section-algebras}
\noindent
Let $k$ be a field. In this chapter an {\it algebra} $A$ over $k$ is
a possibly noncommutative ring $A$ together with a ring map
$k \to A$ such that $k$ maps into the center of $A$ and such that
$1$ maps to an identity element of $A$. An {\it $A$-module} is a right
$A$-module such that the identity of $A$ acts as the identity.
\begin{definition}
\label{definition-finite}
Let $A$ be a $k$-algebra. We say $A$ is {\it finite} if $\dim_k(A) < \infty$.
In this case we write $[A : k] = \dim_k(A)$.
\end{definition}
\begin{definition}
\label{definition-skew-field}
A {\it skew field} is a possibly noncommutative ring with an identity
element $1$, with $1 \not = 0$, in which every nonzero element
has a multiplicative inverse.
\end{definition}
\noindent
A skew field is a $k$-algebra for some $k$ (e.g., for the prime field
contained in it). We will use below that any module over a skew field
is free because a maximal linearly independent set of vectors forms a
basis and exists by Zorn's lemma.
\begin{definition}
\label{definition-simple}
Let $A$ be a $k$-algebra.
We say an $A$-module $M$ is {\it simple} if it is nonzero and
the only $A$-submodules are $0$ and $M$.
We say $A$ is {\it simple} if the only two-sided ideals of $A$ are
$0$ and $A$.
\end{definition}
\begin{definition}
\label{definition-central}
A $k$-algebra $A$ is {\it central} if the center of $A$ is the image of
$k \to A$.
\end{definition}
\begin{definition}
\label{definition-opposite}
Given a $k$-algebra $A$ we denote $A^{op}$ the $k$-algebra we get by
reversing the order of multiplication in $A$. This is called the
{\it opposite algebra}.
\end{definition}
\section{Wedderburn's theorem}
\label{section-wedderburn}
\noindent
The following cute argument can be found in a paper of Rieffel, see
\cite{Rieffel}. The proof could not be simpler (quote from
Carl Faith's review).
\begin{lemma}
\label{lemma-rieffel}
Let $A$ be a possibly noncommutative ring with $1$ which contains no
nontrivial two-sided ideal. Let $M$ be a nonzero right ideal in $A$,
and view $M$ as a right $A$-module. Then $A$ coincides with the
bicommutant of $M$.
\end{lemma}
\begin{proof}
Let $A' = \text{End}_A(M)$, and let $A'' = \text{End}_{A'}(M)$
(the bicommutant of $M$). Let $R : A \to A''$ be the natural homomorphism
$R(a)(m) = ma$. Then $R$ is injective, since $R(1) = \text{id}_M$
and $A$ contains no nontrivial two-sided ideal. We claim that $R(M)$
is a right ideal in $A''$. Namely, $R(m)a'' = R(ma'')$ for $a'' \in A''$
and $m$ in $M$, because {\it left} multiplication of $M$ by any element $n$
of $M$ represents an element of $A'$, and so
$(nm)a'' = n(ma'')$, that is, $(R(m)a'') (n) = R(ma'') (n)$ for all
$n$ in $M$. Finally, the product ideal $AM$ is a two-sided ideal, and so
$A = AM$. Thus $R(A) = R(A)R(M)$, so that $R(A)$ is a right ideal in $A''$.
But $R(A)$ contains the identity element of $A''$, and so $R(A) = A''$.
\end{proof}
\begin{lemma}
\label{lemma-simple-module}
Let $A$ be a $k$-algebra. If $A$ is finite, then
\begin{enumerate}
\item $A$ has a simple module,
\item any nonzero module contains a simple submodule,
\item a simple module over $A$ has finite dimension over $k$, and
\item if $M$ is a simple $A$-module, then $\text{End}_A(M)$ is a
skew field.
\end{enumerate}
\end{lemma}
\begin{proof}
Of course (1) follows from (2) since $A$ is a nonzero $A$-module.
For (2), any submodule of minimal (finite) dimension as a $k$-vector
space will be simple. There exists a finite dimensional one
because a cyclic submodule is one. If $M$ is simple, then
$mA \subset M$ is a sub-module, hence we see (3). Any nonzero element
of $\text{End}_A(M)$ is an isomorphism, hence (4) holds.
\end{proof}
\begin{theorem}
\label{theorem-wedderburn}
Let $A$ be a simple finite $k$-algebra. Then $A$ is a matrix algebra over
a finite $k$-algebra $K$ which is a skew field.
\end{theorem}
\begin{proof}
We may choose a simple submodule $M \subset A$ and then
the $k$-algebra $K = \text{End}_A(M)$ is a skew field, see
Lemma \ref{lemma-simple-module}.
By
Lemma \ref{lemma-rieffel}
we see that $A = \text{End}_K(M)$. Since $K$ is a skew field and
$M$ is finitely generated (since $\dim_k(M) < \infty$) we see that
$M$ is finite free as a left $K$-module. It follows immediately that
$A \cong \text{Mat}(n \times n, K^{op})$.
\end{proof}
\section{Lemmas on algebras}
\label{section-lemmas}
\noindent
Let $A$ be a $k$-algebra. Let $B \subset A$ be a subalgebra.
The {\it centralizer of $B$ in $A$} is the subalgebra
$$
C = \{y \in A \mid xy = yx \text{ for all }x \in B\}.
$$
It is a $k$-algebra.
\begin{lemma}
\label{lemma-centralizer}
Let $A$, $A'$ be $k$-algebras. Let $B \subset A$, $B' \subset A'$ be
subalgebras with centralizers $C$, $C'$. Then the centralizer of
$B \otimes_k B'$ in $A \otimes_k A'$ is $C \otimes_k C'$.
\end{lemma}
\begin{proof}
Denote $C'' \subset A \otimes_k A'$ the centralizer of $B \otimes_k B'$.
It is clear that $C \otimes_k C' \subset C''$. Conversely, every element
of $C''$ commutes with $B \otimes 1$ hence is contained in $C \otimes_k A'$.
Similarly $C'' \subset A \otimes_k C'$. Thus
$C'' \subset C \otimes_k A' \cap A \otimes_k C' = C \otimes_k C'$.
\end{proof}
\begin{lemma}
\label{lemma-center-csa}
Let $A$ be a finite simple $k$-algebra. Then the center $k'$ of $A$
is a finite field extension of $k$.
\end{lemma}
\begin{proof}
Write $A = \text{Mat}(n \times n, K)$ for some skew field $K$ finite
over $k$, see
Theorem \ref{theorem-wedderburn}.
By
Lemma \ref{lemma-centralizer}
the center of $A$ is $k \otimes_k k'$ where $k' \subset K$ is the
center of $K$. Since the center of a skew field is a field, we win.
\end{proof}
\begin{lemma}
\label{lemma-generate-two-sided-sub}
Let $V$ be a $k$ vector space. Let $K$ be a central $k$-algebra
which is a skew field. Let $W \subset V \otimes_k K$ be a two-sided
$K$-sub vector space. Then $W$ is generated as a left $K$-vector
space by $W \cap (V \otimes 1)$.
\end{lemma}
\begin{proof}
Let $V' \subset V$ be the $k$-sub vector space generated by $v \in V$
such that $v \otimes 1 \in W$. Then $V' \otimes_k K \subset W$ and
we have
$$
W/(V' \otimes_k K) \subset (V/V') \otimes_k K.
$$
If $\overline{v} \in V/V'$ is a nonzero vector such that
$\overline{v} \otimes 1$ is contained in $W/V' \otimes_k K$,
then we see that $v \otimes 1 \in W$ where $v \in V$ lifts $\overline{v}$.
This contradicts our construction of $V'$. Hence we may replace
$V$ by $V/V'$ and $W$ by $W/V' \otimes_k K$ and it suffices to prove
that $W \cap (V \otimes 1)$ is nonzero if $W$ is nonzero.
\medskip\noindent
To see this let $w \in W$ be a nonzero element which can be written
as $w = \sum_{i = 1, \ldots, n} v_i \otimes k_i$ with $n$ minimal.
We may right multiply with $k_1^{-1}$ and assume that $k_1 = 1$.
If $n = 1$, then we win because $v_1 \otimes 1 \in W$.
If $n > 1$, then we see that for any $c \in K$
$$
c v - v c = \sum\nolimits_{i = 2, \ldots, n} v_i \otimes (c k_i - k_i c) \in W
$$
and hence $c k_i - k_i c = 0$ by minimality of $n$.
This implies that $k_i$ is in the center of $K$ which is $k$ by
assumption. Hence $v = (v_1 + \sum k_i v_i) \otimes 1$ contradicting
the minimality of $n$.
\end{proof}
\begin{lemma}
\label{lemma-generate-two-sided-ideal}
Let $A$ be a $k$-algebra. Let $K$ be a central $k$-algebra
which is a skew field. Then any two-sided ideal $I \subset A \otimes_k K$
is of the form $J \otimes_k K$ for some two-sided ideal $J \subset A$.
In particular, if $A$ is simple, then so is $A \otimes_k K$.
\end{lemma}
\begin{proof}
Set $J = \{a \in A \mid a \otimes 1 \in I\}$. This is a two-sided ideal
of $A$. And $I = J \otimes_k K$ by
Lemma \ref{lemma-generate-two-sided-sub}.
\end{proof}
\begin{lemma}
\label{lemma-matrix-algebras}
Let $R$ be a possibly noncommutative ring. Let $n \geq 1$ be an integer.
Let $R_n = \text{Mat}(n \times n, R)$.
\begin{enumerate}
\item The functors $M \mapsto M^{\oplus n}$ and
$N \mapsto Ne_{11}$ define quasi-inverse equivalences of categories
$\text{Mod}_R \leftrightarrow \text{Mod}_{R_n}$.
\item A two-sided ideal of $R_n$ is of the form $IR_n$ for some
two-sided ideal $I$ of $R$.
\item The center of $R_n$ is equal to the center of $R$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) proves itself. If $J \subset R_n$ is a two-sided ideal, then
$J = \bigoplus e_{ii}Je_{jj}$ and all of the summands $e_{ii}Je_{jj}$ are
equal to each other and are a two-sided ideal $I$ of $R$. This proves (2).
Part (3) is clear.
\end{proof}
\begin{lemma}
\label{lemma-simple-module-unique}
Let $A$ be a finite simple $k$-algebra.
\begin{enumerate}
\item There exists exactly one simple $A$-module $M$ up to isomorphism.
\item Any finite $A$-module is a direct sum of copies of a simple module.
\item Two finite $A$-modules are isomorphic if and only if they
have the same dimension over $k$.
\item If $A = \text{Mat}(n \times n, K)$ with $K$ a finite skew field
extension of $k$, then $M = K^{\oplus n}$ is a simple $A$-module and
$\text{End}_A(M) = K^{op}$.
\item If $M$ is a simple $A$-module, then $L = \text{End}_A(M)$
is a skew field finite over $k$ acting on the left on $M$, we have
$A = \text{End}_L(M)$, and the centers of $A$ and $L$ agree.
Also $[A : k] [L : k] = \dim_k(M)^2$.
\item For a finite $A$-module $N$ the algebra $B = \text{End}_A(N)$ is a
matrix algebra over the skew field $L$ of (5). Moreover $\text{End}_B(N) = A$.
\end{enumerate}
\end{lemma}
\begin{proof}
By
Theorem \ref{theorem-wedderburn}
we can write $A = \text{Mat}(n \times n, K)$ for some finite skew
field extension $K$ of $k$. By
Lemma \ref{lemma-matrix-algebras}
the category of modules over $A$ is equivalent to the category of
modules over $K$. Thus (1), (2), and (3) hold
because every module over $K$ is free. Part (4) holds
because the equivalence transforms the $K$-module $K$
to $M = K^{\oplus n}$. Using $M = K^{\oplus n}$ in (5)
we see that $L = K^{op}$. The statement about the center of $L = K^{op}$
follows from
Lemma \ref{lemma-matrix-algebras}.
The statement about $\text{End}_L(M)$ follows from the explicit form
of $M$. The formula of dimensions is clear.
Part (6) follows as $N$ is isomorphic to a direct sum of
copies of a simple module.
\end{proof}
\begin{lemma}
\label{lemma-tensor-simple}
Let $A$, $A'$ be two simple $k$-algebras one of which is finite and central
over $k$. Then $A \otimes_k A'$ is simple.
\end{lemma}
\begin{proof}
Suppose that $A'$ is finite and central over $k$.
Write $A' = \text{Mat}(n \times n, K')$, see
Theorem \ref{theorem-wedderburn}.
Then the center of $K'$ is $k$ and we conclude that
$A \otimes_k K'$ is simple by
Lemma \ref{lemma-generate-two-sided-ideal}.
Hence $A \otimes_k A' = \text{Mat}(n \times n, A \otimes_k K')$ is simple
by Lemma \ref{lemma-matrix-algebras}.
\end{proof}
\begin{lemma}
\label{lemma-tensor-central-simple}
The tensor product of finite central simple algebras over $k$ is finite,
central, and simple.
\end{lemma}
\begin{proof}
Combine Lemmas \ref{lemma-centralizer} and \ref{lemma-tensor-simple}.
\end{proof}
\begin{lemma}
\label{lemma-base-change}
Let $A$ be a finite central simple algebra over $k$.
Let $k \subset k'$ be a field extension. Then $A' = A \otimes_k k'$ is
a finite central simple algebra over $k'$.
\end{lemma}
\begin{proof}
Combine Lemmas \ref{lemma-centralizer} and \ref{lemma-tensor-simple}.
\end{proof}
\begin{lemma}
\label{lemma-inverse}
Let $A$ be a finite central simple algebra over $k$.
Then $A \otimes_k A^{op} \cong \text{Mat}(n \times n, k)$
where $n = [A : k]$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-tensor-central-simple} the algebra $A \otimes_k A^{op}$
is simple. Hence the map
$$
A \otimes_k A^{op} \longrightarrow \text{End}_k(A),\quad
a \otimes a' \longmapsto (x \mapsto axa')
$$
is injective. Since both sides of the arrow have the same dimension
we win.
\end{proof}
\section{The Brauer group of a field}
\label{section-brauer}
\noindent
Let $k$ be a field. Consider two finite central simple algebras
$A$ and $B$ over $k$. We say $A$ and $B$ are {\it similar} if there
exist $n, m > 0$ such that
$\text{Mat}(n \times n, A) \cong \text{Mat}(m \times m, B)$
as $k$-algebras.
\begin{lemma}
\label{lemma-similar}
Similarity.
\begin{enumerate}
\item Similarity defines an equivalence relation on the set of isomorphism
classes of finite central simple algebras over $k$.
\item Every similarity class contains a unique (up to isomorphism)
finite central skew field extension of $k$.
\item If $A = \text{Mat}(n \times n, K)$ and $B = \text{Mat}(m \times m, K')$
for some finite central skew fields $K$, $K'$ over $k$
then $A$ and $B$ are similar if and only if $K \cong K'$ as $k$-algebras.
\end{enumerate}
\end{lemma}
\begin{proof}
Note that by Wedderburn's theorem (Theorem \ref{theorem-wedderburn})
we can always write a finite central simple algebra as a matrix
algebra over a finite central skew field. Hence it suffices to prove
the third assertion. To see this it suffices to show that if
$A = \text{Mat}(n \times n, K) \cong \text{Mat}(m \times m, K') = B$
then $K \cong K'$. To see this note that for a simple module $M$ of $A$
we have $\text{End}_A(M) = K^{op}$, see
Lemma \ref{lemma-simple-module-unique}.
Hence $A \cong B$ implies $K^{op} \cong (K')^{op}$ and we win.
\end{proof}
\noindent
Given two finite central simple $k$-algebras $A$, $B$ the tensor
product $A \otimes_k B$ is another, see
Lemma \ref{lemma-tensor-central-simple}.
Moreover if $A$ is similar to $A'$, then $A \otimes_k B$ is similar
to $A' \otimes_k B$ because tensor products and taking matrix
algebras commute. Hence tensor product defines an operation on
equivalence classes of finite central simple algebras which is clearly
associative and commutative. Finally,
Lemma \ref{lemma-inverse}
shows that $A \otimes_k A^{op}$ is isomorphic to a matrix algebra, i.e.,
that $A \otimes_k A^{op}$ is in the similarity class of $k$.
Thus we obtain an abelian group.
\begin{definition}
\label{definition-brauer-group}
Let $k$ be a field. The {\it Brauer group} of $k$ is the abelian group
of similarity classes of finite central simple $k$-algebras defined
above. Notation $\text{Br}(k)$.
\end{definition}
\noindent
For any map of fields $k \to k'$ we obtain a group homomorphism
$$
\text{Br}(k) \longrightarrow \text{Br}(k'),\quad
A \longmapsto A \otimes_k k'
$$
see Lemma \ref{lemma-base-change}. In other words, $\text{Br}(-)$ is
a functor from the category of fields to the category of abelian groups.
Observe that the Brauer group
of a field is zero if and only if every finite central skew field
extension $k \subset K$ is trivial.
\begin{lemma}
\label{lemma-brauer-algebraically-closed}
The Brauer group of an algebraically closed field is zero.
\end{lemma}
\begin{proof}
Let $k \subset K$ be a finite central skew field extension.
For any element $x \in K$ the subring $k[x] \subset K$ is a
commutative finite integral $k$-sub algebra, hence a field, see
Algebra, Lemma \ref{algebra-lemma-integral-over-field}.
Since $k$ is algebraically closed we conclude that
$k[x] = k$. Since $x$ was arbitrary we conclude $k = K$.
\end{proof}
\begin{lemma}
\label{lemma-dimension-square}
Let $A$ be a finite central simple algebra over a field $k$.
Then $[A : k]$ is a square.
\end{lemma}
\begin{proof}
This is true because $A \otimes_k \overline{k}$ is a matrix
algebra over $\overline{k}$ by
Lemma \ref{lemma-brauer-algebraically-closed}.
\end{proof}
\section{Skolem-Noether}
\label{section-skolem-noether}
\begin{theorem}
\label{theorem-skolem-noether}
Let $A$ be a finite central simple $k$-algebra. Let $B$ be a simple
$k$-algebra. Let $f, g : B \to A$ be two $k$-algebra homomorphisms.
Then there exists an invertible element $x \in A$ such that
$f(b) = xg(b)x^{-1}$ for all $b \in B$.
\end{theorem}
\begin{proof}
Choose a simple $A$-module $M$. Set $L = \text{End}_A(M)$.
Then $L$ is a skew field with center $k$ which acts on the left on $M$, see
Lemmas \ref{lemma-simple-module} and \ref{lemma-simple-module-unique}.
Then $M$ has two $B \otimes_k L^{op}$-module structures defined by
$m \cdot_1 (b \otimes l) = lmf(b)$ and $m \cdot_2 (b \otimes l) = lmg(b)$.
The $k$-algebra $B \otimes_k L^{op}$ is simple by
Lemma \ref{lemma-tensor-simple}. Since $B$ is simple, the existence of a
$k$-algebra homomorphism $B \to A$ implies that $B$ is finite. Thus
$B \otimes_k L^{op}$ is finite simple and we conlude the two
$B \otimes_k L^{op}$-module structures on $M$
are isomorphic by Lemma \ref{lemma-simple-module-unique}.
Hence we find $\varphi : M \to M$ intertwining these operations.
In particular $\varphi$ is in the commutant of $L$ which implies that
$\varphi$ is multiplication by some $x \in A$, see
Lemma \ref{lemma-simple-module-unique}. Working out the definitions we see
that $x$ is a solution to our problem.
\end{proof}
\begin{lemma}
\label{lemma-automorphism-inner}
Let $A$ be a finite simple $k$-algebra. Any automorphism of $A$ is
inner. In particular, any automorphism of $\text{Mat}(n \times n, k)$
is inner.
\end{lemma}
\begin{proof}
Note that $A$ is a finite central simple algebra over the center
of $A$ which is a finite field extension of $k$, see
Lemma \ref{lemma-center-csa}.
Hence the Skolem-Noether theorem (Theorem \ref{theorem-skolem-noether})
applies.
\end{proof}
\section{The centralizer theorem}
\label{section-centralizer}
\begin{theorem}
\label{theorem-centralizer}
Let $A$ be a finite central simple algebra over $k$, and let
$B$ be a simple subalgebra of $A$. Then
\begin{enumerate}
\item the centralizer $C$ of $B$ in $A$ is simple,
\item $[A : k] = [B : k][C : k]$, and
\item the centralizer of $C$ in $A$ is $B$.
\end{enumerate}
\end{theorem}
\begin{proof}
Throughout this proof we use the results of
Lemma \ref{lemma-simple-module-unique} freely.
Choose a simple $A$-module $M$. Set $L = \text{End}_A(M)$.
Then $L$ is a skew field with center $k$ which acts on the left on $M$
and $A = \text{End}_L(M)$.
Then $M$ is a right $B \otimes_k L^{op}$-module and
$C = \text{End}_{B \otimes_k L^{op}}(M)$.
Since the algebra $B \otimes_k L^{op}$ is simple by
Lemma \ref{lemma-tensor-simple} we see that $C$ is simple (by
Lemma \ref{lemma-simple-module-unique} again).
\medskip\noindent
Write $B \otimes_k L^{op} = \text{Mat}(m \times m, K)$ for some
skew field $K$ finite over $k$. Then $C = \text{Mat}(n \times n, K^{op})$
if $M$ is isomorphic to a direct sum of $n$ copies of the simple
$B \otimes_k L^{op}$-module $K^{\oplus m}$ (the lemma again). Thus we have
$\dim_k(M) = nm [K : k]$, $[B : k] [L : k] = m^2 [K : k]$,
$[C : k] = n^2 [K : k]$, and $[A : k] [L : k] = \dim_k(M)^2$ (by
the lemma again). We conclude that (2) holds.
\medskip\noindent
Part (3) follows because of (2) applied to $C \subset A$ shows
that $[B : k] = [C' : k]$ where $C'$ is the centralizer of $C$ in $A$
(and the obvious fact that $B \subset C')$.
\end{proof}
\begin{lemma}
\label{lemma-when-tensor-is-equal}
Let $A$ be a finite central simple algebra over $k$, and let
$B$ be a simple subalgebra of $A$. If $B$ is a central
$k$-algebra, then $A = B \otimes_k C$ where $C$ is the (central simple)
centralizer of $B$ in $A$.
\end{lemma}
\begin{proof}
We have $\dim_k(A) = \dim_k(B \otimes_k C)$ by
Theorem \ref{theorem-centralizer}. By
Lemma \ref{lemma-tensor-simple}
the tensor product is simple. Hence the natural map
$B \otimes_k C \to A$ is injective hence an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-self-centralizing-subfield}
Let $A$ be a finite central simple algebra over $k$.
If $K \subset A$ is a subfield, then the following are equivalent
\begin{enumerate}
\item $[A : k] = [K : k]^2$,
\item $K$ is its own centralizer, and
\item $K$ is a maximal commutative subring.
\end{enumerate}
\end{lemma}
\begin{proof}
Theorem \ref{theorem-centralizer}
shows that (1) and (2) are equivalent.
It is clear that (3) and (2) are equivalent.
\end{proof}
\begin{lemma}
\label{lemma-maximal-subfield}
Let $A$ be a finite central skew field over $k$.
Then every maximal subfield $K \subset A$ satisfies
$[A : k] = [K : k]^2$.
\end{lemma}
\begin{proof}
Special case of Lemma \ref{lemma-self-centralizing-subfield}.
\end{proof}
\section{Splitting fields}
\label{section-splitting}
\begin{definition}
\label{definition-splitting}
Let $A$ be a finite central simple $k$-algebra.
We say a field extension $k \subset k'$ {\it splits} $A$, or
$k'$ is a {\it splitting field} for $A$ if $A \otimes_k k'$ is
a matrix algebra over $k'$.
\end{definition}
\noindent
Another way to say this is that the class of $A$ maps to zero
under the map $\text{Br}(k) \to \text{Br}(k')$.
\begin{theorem}
\label{theorem-splitting}
Let $A$ be a finite central simple $k$-algebra.
Let $k \subset k'$ be a finite field extension.
The following are equivalent
\begin{enumerate}
\item $k'$ splits $A$, and
\item there exists a finite central simple algebra $B$ similar to $A$
such that $k' \subset B$ and $[B : k] = [k' : k]^2$.
\end{enumerate}
\end{theorem}
\begin{proof}
Assume (2). It suffices to show that $B \otimes_k k'$ is a matrix
algebra. We know that $B \otimes_k B^{op} \cong \text{End}_k(B)$.
Since $k'$ is the centralizer of $k'$ in $B^{op}$ by
Lemma \ref{lemma-self-centralizing-subfield}
we see that $B \otimes_k k'$ is the centralizer of $k \otimes k'$
in $B \otimes_k B^{op} = \text{End}_k(B)$. Of course this centralizer
is just $\text{End}_{k'}(B)$ where we view $B$ as a $k'$ vector space
via the embedding $k' \to B$. Thus the result.
\medskip\noindent
Assume (1). This means that we have an isomorphism
$A \otimes_k k' \cong \text{End}_{k'}(V)$ for some $k'$-vector space $V$.
Let $B$ be the commutant of $A$ in $\text{End}_k(V)$. Note that
$k'$ sits in $B$. By
Lemma \ref{lemma-when-tensor-is-equal}
the classes of $A$ and $B$ add up to zero in $\text{Br}(k)$.
From the dimension formula in
Theorem \ref{theorem-centralizer}
we see that
$$
[B : k] [A : k] =
\dim_k(V)^2 =
[k' : k]^2 \dim_{k'}(V)^2 =
[k' : k]^2 [A : k].
$$
Hence $[B : k] = [k' : k]^2$. Thus we have proved the result for the
opposite to the Brauer class of $A$. However, $k'$ splits the Brauer
class of $A$ if and only if it splits
the Brauer class of the opposite algebra, so we win anyway.
\end{proof}
\begin{lemma}
\label{lemma-maximal-subfield-splits}
A maximal subfield of a finite central skew field $K$ over $k$ is
a splitting field for $K$.
\end{lemma}
\begin{proof}
Combine Lemma \ref{lemma-maximal-subfield} with
Theorem \ref{theorem-splitting}.
\end{proof}
\begin{lemma}
\label{lemma-splitting-field-degree}
Consider a finite central skew field $K$ over $k$. Let $d^2 = [K : k]$.
For any finite splitting field $k'$ for $K$ the degree $[k' : k]$ is
divisible by $d$.
\end{lemma}
\begin{proof}
By Theorem \ref{theorem-splitting} there exists a finite central
simple algebra $B$ in the Brauer class of $K$ such that
$[B : k] = [k' : k]^2$. By
Lemma \ref{lemma-similar}
we see that $B = \text{Mat}(n \times n, K)$ for some $n$.
Then $[k' : k]^2 = n^2d^2$ whence the result.
\end{proof}
\begin{proposition}
\label{proposition-separable-splitting-field}
Consider a finite central skew field $K$ over $k$.
There exists a maximal subfield $k \subset k' \subset K$ which
is separable over $k$.
In particular, every Brauer class has a finite separable
spitting field.
\end{proposition}
\begin{proof}
Since every Brauer class is represented by a finite central skew
field over $k$, we see that the second statement follows from the
first by
Lemma \ref{lemma-maximal-subfield-splits}.
\medskip\noindent
To prove the first statement, suppose that we are given a separable
subfield $k' \subset K$. Then the centralizer $K'$ of $k'$ in $K$
has center $k'$, and the problem reduces to finding a maximal
subfield of $K'$ separable over $k'$. Thus it suffices to prove, if
$k \not = K$, that we can find an element $x \in K$, $x \not \in k$
which is separable over $k$. This statement is clear in characteristic
zero. Hence we may assume that $k$ has characteristic $p > 0$. If the
ground field $k$ is finite then, the result is clear as well (because
extensions of finite fields are always separable). Thus we may assume
that $k$ is an infinite field of positive characteristic.
\medskip\noindent
To get a contradiction assume no element of $K$ is separable over $k$.
By the discussion in
Fields, Section \ref{fields-section-algebraic}
this means the minimal polynomial of any $x \in K$ is of the form
$T^q - a$ where $q$ is a power of $p$ and $a \in k$. Since it is
clear that every element of $K$ has a minimal polynomial of degree
$\leq \dim_k(K)$ we conclude that there exists a fixed $p$-power
$q$ such that $x^q \in k$ for all $x \in K$.
\medskip\noindent
Consider the map
$$
(-)^q : K \longrightarrow K
$$
and write it out in terms of a $k$-basis $\{a_1, \ldots, a_n\}$ of $K$
with $a_1 = 1$. So
$$
(\sum x_i a_i)^q = \sum f_i(x_1, \ldots, x_n)a_i.
$$
Since multiplication on $A$ is $k$-bilinear we see that each $f_i$
is a polynomial in $x_1, \ldots, x_n$ (details omitted).
The choice of $q$ above and the fact that $k$ is infinite shows that
$f_i$ is identically zero for $i \geq 2$. Hence we see that it remains
zero on extending $k$ to its algebraic closure $\overline{k}$. But the
algebra $A \otimes_k \overline{k}$ is a matrix algebra, which implies
there are some elements whose $q$th power is not central (e.g., $e_{11}$).
This is the desired contradiction.
\end{proof}
\noindent
The results above allow us to characterize finite central simple algebras
as follows.
\begin{lemma}
\label{lemma-finite-central-simple-algebra}
Let $k$ be a field. For a $k$-algebra $A$ the following are equivalent
\begin{enumerate}
\item $A$ is finite central simple $k$-algebra,
\item $A$ is a finite dimensional $k$-vector space, $k$ is the center of $A$,
and $A$ has no nontrivial two-sided ideal,
\item there exists $d \geq 1$ such that
$A \otimes_k \bar k \cong \text{Mat}(d \times d, \bar k)$,
\item there exists $d \geq 1$ such that
$A \otimes_k k^{sep} \cong \text{Mat}(d \times d, k^{sep})$,
\item there exist $d \geq 1$ and a finite Galois extension $k \subset k'$
such that
$A \otimes_{k'} k' \cong \text{Mat}(d \times d, k')$,
\item there exist $n \geq 1$ and a finite central skew field $K$
over $k$ such that $A \cong \text{Mat}(n \times n, K)$.
\end{enumerate}
The integer $d$ is called the {\it degree} of $A$.
\end{lemma}
\begin{proof}
The equivalence of (1) and (2) is a consequence of the definitions, see
Section \ref{section-algebras}.
Assume (1). By
Proposition \ref{proposition-separable-splitting-field}
there exists a separable splitting field $k \subset k'$ for $A$.
Of course, then a Galois closure of $k'/k$ is a splitting field also.
Thus we see that (1) implies (5). It is clear that (5) $\Rightarrow$ (4)
$\Rightarrow$ (3). Assume (3). Then $A \otimes_k \overline{k}$
is a finite central simple $\overline{k}$-algebra for example by
Lemma \ref{lemma-matrix-algebras}.
This trivially implies that $A$ is a finite central simple $k$-algebra.
Finally, the equivalence of (1) and (6) is Wedderburn's theorem, see
Theorem \ref{theorem-wedderburn}.
\end{proof}
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}