-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRadarplot_departamentos.R
148 lines (98 loc) · 4.19 KB
/
Radarplot_departamentos.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
library(ggradar)
library(tidyverse)
library(scales)
library(survey)
library(fmsb)
df_gestantes<- read.csv("./data/datatest.csv")
###################
df_gestantes2<-
df_gestantes %>%
mutate(
CHECKUP_RULE_OUT_HIV = ifelse(is.na(CHECKUP_RULE_OUT_HIV),"NO",CHECKUP_RULE_OUT_HIV)
)
##################
df<-
df_gestantes2 %>%
mutate(
CHECKUP_RULE_OUT_HIV2 = ifelse(is.na(CHECKUP_RULE_OUT_HIV),"Missing",
ifelse(CHECKUP_RULE_OUT_HIV == 1,"Yes",
ifelse(CHECKUP_RULE_OUT_HIV == 0 | CHECKUP_RULE_OUT_HIV == 8 , "No",CHECKUP_RULE_OUT_HIV))),
CHECKUP_RULE_OUT_HIV2 = as.factor(CHECKUP_RULE_OUT_HIV2)
) %>%
group_by(year) %>%
nest() %>%
mutate(
datasvy = map(.x = data,
.f = ~svydesign(id =~ V001, strata =~ V022, weights=~V005, data=.x))
)
options(survey.lonely.psu="remove")
#################
df2<-
df %>%
mutate(
vih = map(.x = datasvy,
.f = ~svyby(~as.factor(CHECKUP_RULE_OUT_HIV), by = ~as.factor(DEPARTAMEN), design = .x, FUN =svyciprop, na.rm.all = T))
) %>%
unnest(vih) %>%
mutate(
across(`as.factor(CHECKUP_RULE_OUT_HIV)`:`se.as.numeric(as.factor(CHECKUP_RULE_OUT_HIV))`,.fns = ~round(.,2)*100)
) %>%
rename(
DEPARTAMEN = `as.factor(DEPARTAMEN)`,
`HIV Screening` = `as.factor(CHECKUP_RULE_OUT_HIV)`
)
##### Grafico ###########
df2 %>%
select(year,`HIV Screening`,DEPARTAMEN) %>%
group_by(DEPARTAMEN,year) %>%
arrange(.by_group = T) %>%
pivot_wider(names_from = "year", values_from = `HIV Screening`) %>%
ggradar(grid.max = 100)
##########################
df3<-
df2 %>%
select(year,`HIV Screening`,DEPARTAMEN) %>%
group_by(DEPARTAMEN,year) %>%
arrange(.by_group = T) %>%
pivot_wider(names_from = "year", values_from = `HIV Screening`) %>%
ungroup() %>%
mutate(
macroreg = ifelse(DEPARTAMEN == "TUMBES"|DEPARTAMEN == "PIURA"|
DEPARTAMEN == "LAMBAYEQUE"|DEPARTAMEN == "LA LIBERTAD"|
DEPARTAMEN == "CAJAMARCA"|DEPARTAMEN == "AMAZONAS"|
DEPARTAMEN == "SAN MARTIN","Macro NO",
ifelse(DEPARTAMEN == "ANCASH"|DEPARTAMEN == "UCAYALI"|
DEPARTAMEN == "JUNIN"|DEPARTAMEN == "HUANUCO"|
DEPARTAMEN == "PASCO"|DEPARTAMEN == "HUANCAVELICA","MACRO C",
ifelse(DEPARTAMEN == "ICA"|DEPARTAMEN == "AREQUIPA"|
DEPARTAMEN == "MOQUEGUA"|DEPARTAMEN == "TACNA","Macro SO",
ifelse(DEPARTAMEN == "CUSCO"|DEPARTAMEN == "PUNO"|
DEPARTAMEN == "AYACUCHO"|DEPARTAMEN == "MADRE DE DIOS"|
DEPARTAMEN == "APURIMAC","Macro SE",
ifelse(DEPARTAMEN == "LORETO", "macro NE",
ifelse(DEPARTAMEN == "LIMA"|
DEPARTAMEN == "CALLAO","Macro Lima",DEPARTAMEN))))))
)
color <- c("#5F4690","#1D6996","#38A6A5","#0F8554",
"#73AF48","#EDAD08","#E17C05","#CC503E",
"#94346E","#6F4070","#994E95","#666666")
blue_fall <- c("#eaac8b","#e56b6f","#b56576","#6d597a", "#355070","red"
)
a<-
df3 %>%
#select(-DEPARTAMEN) %>%
mutate(
macroreg = as.character(macroreg),
DEPARTAMEN = as.character(DEPARTAMEN)
) %>%
group_by(macroreg) %>%
nest() %>%
mutate(
grafico = map(.x = data,
.f = ~ggradar(.x, grid.max = 100,
legend.text.size = 8,
legend.position = "bottom", group.colours = color))
)
cowplot::plot_grid(plotlist = a$grafico, ncol = 3, labels = "auto")
ggsave("test.jpg",width = 22, height = 11, dpi = 300)
a$grafico[[1]]