-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathUtils.py
227 lines (180 loc) · 7.31 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 14 10:54:02 2021
@author: hcji
"""
import os
import base64
import numpy as np
from scipy.sparse import csc_matrix, eye, diags
from scipy.sparse.linalg import spsolve
from scipy.spatial.distance import pdist
# from joblib import Parallel, delayed
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtCore import Qt
def pic2py(picture_names, py_name):
write_data = []
for picture_name in picture_names:
filename = picture_name.replace('.', '_')
open_pic = open("%s" % picture_name, 'rb')
b64str = base64.b64encode(open_pic.read())
open_pic.close()
write_data.append('%s = "%s"\n' % (filename.split('/')[-1], b64str.decode()))
f = open('%s.py' % py_name, 'w+')
for data in write_data:
f.write(data)
f.close()
def get_pic(pic_code, pic_name):
image = open(pic_name, 'wb')
image.write(base64.b64decode(pic_code))
image.close()
class TableModel(QtCore.QAbstractTableModel):
def __init__(self, data, showAllColumn=False):
QtCore.QAbstractTableModel.__init__(self)
self.showAllColumn = showAllColumn
self._data = data
def rowCount(self, parent=None):
return self._data.shape[0]
def columnCount(self, parent=None):
return self._data.shape[1]
def data(self, index, role=Qt.DisplayRole):
if index.isValid():
if role == Qt.DisplayRole:
return str(self._data.iloc[index.row(), index.column()])
return None
def headerData(self,col,orientation,role):
if orientation == Qt.Horizontal and role == Qt.DisplayRole:
if type(self._data.columns[col]) == tuple:
return self._data.columns[col][-1]
else:
return self._data.columns[col]
elif orientation == Qt.Vertical and role == Qt.DisplayRole:
return (self._data.axes[0][col])
return None
def meltCurve(T, a, b, pl):
A = 1 - pl
B = 1 + np.exp(b - a/T)
return A / B + pl
def fit_NPARC(x, y11, y12, y21, y22, minR2_null = 0.8, minR2_alt = 0.8, maxPlateau = 0.3):
x_null = np.concatenate([x, x])
y1_null = np.concatenate([y11, y21])
y2_null = np.concatenate([y12, y22])
try:
paras1_null = curve_fit(meltCurve, x_null, y1_null, bounds=(0, [15000, 250, maxPlateau]))[0]
paras2_null = curve_fit(meltCurve, x_null, y2_null, bounds=(0, [15000, 250, maxPlateau]))[0]
yh1_null = meltCurve(x_null, paras1_null[0], paras1_null[1], paras1_null[2])
yh2_null = meltCurve(x_null, paras2_null[0], paras2_null[1], paras2_null[2])
rss_null = np.sum((y1_null - yh1_null) ** 2) + np.sum((y2_null - yh2_null) ** 2)
r1_null = max(r2_score(y1_null, yh1_null), 0)
r2_null = max(r2_score(y2_null, yh2_null), 0)
if min(r1_null, r2_null) < minR2_null:
rss_null = np.nan
except:
rss_null = np.nan
r1_null = np.nan
r2_null = np.nan
x_alt = np.concatenate([x, x, x, x])
y_alt = np.concatenate([y11, y12, y21, y22])
try:
paras_alt = curve_fit(meltCurve, x_alt, y_alt, bounds=(0, [float('inf'), float('inf'), maxPlateau]))[0]
yh_alt = meltCurve(x_alt, paras_alt[0], paras_alt[1], paras_alt[2])
r_alt = max(r2_score(y_alt, yh_alt), 0)
if r_alt < minR2_alt:
rss_alt = np.nan
else:
rss_alt = np.sum((y_alt - yh_alt) ** 2)
except:
rss_alt = np.nan
rss_diff = abs(rss_null - rss_alt)
return r1_null, r2_null, rss_null, rss_alt, rss_diff
def fit_dist(x, y1, y2, method = 'cityblock', minR2 = 0.8, maxPlateau = 0.3):
try:
paras1 = curve_fit(meltCurve, x, y1, bounds=(0, [15000, 250, maxPlateau]))[0]
paras2 = curve_fit(meltCurve, x, y2, bounds=(0, [15000, 250, maxPlateau]))[0]
except:
return np.nan, np.nan, np.nan, np.nan, np.nan, np.nan
# print(method)
yh1 = meltCurve(x, paras1[0], paras1[1], paras1[2])
yh2 = meltCurve(x, paras2[0], paras2[1], paras2[2])
rss1 = np.sum((y1 - yh1) ** 2) + np.sum((y2 - yh2) ** 2)
x1 = np.arange(x[0], x[-1], 0.01)
yy1 = meltCurve(x1, paras1[0], paras1[1], paras1[2])
yy2 = meltCurve(x1, paras2[0], paras2[1], paras2[2])
sl1 = np.min((yy1[1:] - yy1[:-1]) / 0.01)
sl2 = np.min((yy2[1:] - yy2[:-1]) / 0.01)
sl = min(sl1, sl2)
rss0 = np.sum(yh1)
rss1 = np.sum(yh2)
diff = pdist(np.vstack([yh1, yh2]), metric = method)[0]
r1 = max(r2_score(y1, yh1), 0)
r2 = max(r2_score(y2, yh2), 0)
if min(r1, r2) < minR2:
diff = np.nan
sl = np.nan
rss0 = np.nan
rss1 = np.nan
return r1, r2, rss0, rss1, diff, sl
def fit_curve(x, y1, y2, minR2 = 0.8, maxPlateau = 0.3, h_axis = 0.5):
try:
paras1 = curve_fit(meltCurve, x, y1, bounds=(0, [15000, 250, maxPlateau]))[0]
paras2 = curve_fit(meltCurve, x, y2, bounds=(0, [15000, 250, maxPlateau]))[0]
except:
return 0, 0, 0, 0, 0, 0
yh1 = meltCurve(x, paras1[0], paras1[1], paras1[2])
yh2 = meltCurve(x, paras2[0], paras2[1], paras2[2])
r1 = max(r2_score(y1, yh1), 0)
r2 = max(r2_score(y2, yh2), 0)
x1 = np.arange(x[0], x[-1], 0.01)
yy1 = meltCurve(x1, paras1[0], paras1[1], paras1[2])
yy2 = meltCurve(x1, paras2[0], paras2[1], paras2[2])
Tm1 = x1[np.argmin(np.abs(yy1 - h_axis))]
Tm2 = x1[np.argmin(np.abs(yy2 - h_axis))]
sl1 = np.min((yy1[1:] - yy1[:-1]) / 0.01)
sl2 = np.min((yy2[1:] - yy2[:-1]) / 0.01)
sl = min(sl1, sl2)
if min(r1, r2) < minR2:
deltaTm = np.nan
elif max(np.min(yh1), np.min(yh2)) > h_axis + 0.1:
deltaTm = np.nan
else:
deltaTm = Tm2 - Tm1
return r1, r2, Tm1, Tm2, deltaTm, sl
def WhittakerSmooth(x, lambda_, differences=1):
X = np.matrix(x)
w = np.ones(x.shape[0])
m = X.size
E = eye(m, format='csc')
D = E[1:] - E[:-1]
W = diags(w, 0, shape=(m, m))
A = csc_matrix(W + (lambda_ * D.T * D))
B = csc_matrix(W * X.T)
background = spsolve(A, B)
return np.array(background)
def ReplicateCheck(tppTable, pthres1, pthres2, min_slope):
# tppTable = pd.read_csv('test_tpp.csv', index_col=0)
if 'Rep2delta_Tm' not in tppTable.columns:
return tppTable
for i in tppTable.index:
pval_1 = tppTable.loc[i, 'Rep1pVal (-log10)']
pval_2 = tppTable.loc[i, 'Rep2pVal (-log10)']
t1 = max(-np.log10(pthres1), -np.log10(pthres2))
t2 = min(-np.log10(pthres1), -np.log10(pthres2))
cond_1 = (max(pval_1, pval_2) > t1) and (min(pval_1, pval_2) > t2)
delm_1 = tppTable.loc[i, 'Rep1delta_Tm']
delm_2 = tppTable.loc[i, 'Rep2delta_Tm']
cond_2 = delm_1 * delm_2 > 0
tm = abs(tppTable.loc[i, 'Rep1Group1_Tm'] - tppTable.loc[i, 'Rep2Group1_Tm'])
cond_3 = min(delm_1, delm_2) > tm
mins_1 = tppTable.loc[i, 'Rep1min_Slope']
mins_2 = tppTable.loc[i, 'Rep2min_Slope']
cond_4 = max(mins_1, mins_2) < min_slope
if cond_1 and cond_2 and cond_3 and cond_4:
pass
else:
tppTable.loc[i, 'Score'] = 0
return tppTable
if __name__ == '__main__':
pics = ['img/{}'.format(f) for f in os.listdir('img')]
pic2py(pics, 'memory_pic')