forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_750.java
64 lines (59 loc) · 1.76 KB
/
_750.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
package com.fishercoder.solutions;
/**
* 750. Number Of Corner Rectangles
*
* Given a grid where each entry is only 0 or 1, find the number of corner rectangles.
* A corner rectangle is 4 distinct 1s on the grid that form an axis-aligned rectangle.
* Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.
Example 1:
Input: grid =
[[1, 0, 0, 1, 0],
[0, 0, 1, 0, 1],
[0, 0, 0, 1, 0],
[1, 0, 1, 0, 1]]
Output: 1
Explanation: There is only one corner rectangle, with corners grid[1][2], grid[1][4], grid[3][2], grid[3][4].
Example 2:
Input: grid =
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]
Output: 9
Explanation: There are four 2x2 rectangles, four 2x3 and 3x2 rectangles, and one 3x3 rectangle.
Example 3:
Input: grid =
[[1, 1, 1, 1]]
Output: 0
Explanation: Rectangles must have four distinct corners.
Note:
The number of rows and columns of grid will each be in the range [1, 200].
Each grid[i][j] will be either 0 or 1.
The number of 1s in the grid will be at most 6000.*/
public class _750 {
public static class Solution1 {
public int countCornerRectangles(int[][] grid) {
if (grid == null || grid.length < 2) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int count = 0;
for (int i = 0; i < m - 1; i++) {
for (int j = 0; j < n - 1; j++) {
if (grid[i][j] == 1) {
for (int jNext = j + 1; jNext < n; jNext++) {
if (grid[i][jNext] == 1) {
for (int iNext = i + 1; iNext < m; iNext++) {
if (grid[iNext][j] == 1 && grid[iNext][jNext] == 1) {
count++;
}
}
}
}
}
}
}
return count;
}
}
}