diff --git a/mani_skill2/agents/controllers/base_controller.py b/mani_skill2/agents/controllers/base_controller.py index 487e9e8ae..75f555620 100644 --- a/mani_skill2/agents/controllers/base_controller.py +++ b/mani_skill2/agents/controllers/base_controller.py @@ -206,12 +206,7 @@ def _initialize_joints(self): def _assert_fully_actuated(self): active_joints = self.articulation.get_active_joints() - if len(active_joints) != len(self.joints) or not np.all( - [ - active_joint == joint - for active_joint, joint in zip(active_joints, self.joints) - ] - ): + if len(active_joints) != len(self.joints) or set(active_joints) != set(self.joints): print("active_joints:", [x.name for x in active_joints]) print("controlled_joints:", [x.name for x in self.joints]) raise AssertionError("{} is not fully actuated".format(self.articulation)) diff --git a/mani_skill2/agents/controllers/pd_base_vel.py b/mani_skill2/agents/controllers/pd_base_vel.py index 098e741a5..e5322fe2b 100644 --- a/mani_skill2/agents/controllers/pd_base_vel.py +++ b/mani_skill2/agents/controllers/pd_base_vel.py @@ -1,4 +1,5 @@ import numpy as np +import torch from mani_skill2.utils.geometry import rotate_2d_vec_by_angle @@ -18,14 +19,21 @@ def _initialize_action_space(self): def set_action(self, action: np.ndarray): action = self._preprocess_action(action) + # TODO (arth): add support for batched qpos and gpu sim + if isinstance(self.qpos, torch.Tensor): + qpos = self.qpos.detach().cpu().numpy() + qpos = qpos[0] + if isinstance(action, torch.Tensor): + action = action.detach().cpu().numpy() + # Convert to ego-centric action # Assume the 3rd DoF stands for orientation - ori = self.qpos[2] + ori = qpos[2] vel = rotate_2d_vec_by_angle(action[:2], ori) new_action = np.hstack([vel, action[2:]]) for i, joint in enumerate(self.joints): - joint.set_drive_velocity_target(new_action[i]) + joint.set_drive_velocity_target(np.array([new_action[i]])) class PDBaseVelControllerConfig(PDJointVelControllerConfig): diff --git a/mani_skill2/agents/controllers/pd_ee_pose.py b/mani_skill2/agents/controllers/pd_ee_pose.py index d6a10cc4f..1aaeeffb8 100644 --- a/mani_skill2/agents/controllers/pd_ee_pose.py +++ b/mani_skill2/agents/controllers/pd_ee_pose.py @@ -8,7 +8,7 @@ from scipy.spatial.transform import Rotation from mani_skill2.utils.common import clip_and_scale_action -from mani_skill2.utils.sapien_utils import get_obj_by_name +from mani_skill2.utils.sapien_utils import get_obj_by_name, to_numpy, to_tensor from mani_skill2.utils.structs.pose import vectorize_pose from .base_controller import BaseController, ControllerConfig @@ -64,15 +64,17 @@ def reset(self): def compute_ik(self, target_pose, max_iterations=100): # Assume the target pose is defined in the base frame + # TODO (arth): currently ik only supports cpu, so input/output is managed as such + # in future, need to change input/output processing per gpu implementation result, success, error = self.pmodel.compute_inverse_kinematics( self.ee_link_idx, - target_pose, - initial_qpos=self.articulation.get_qpos(), + target_pose.sp, + initial_qpos=to_numpy(self.articulation.get_qpos()).squeeze(0), active_qmask=self.qmask, max_iterations=max_iterations, ) if success: - return result[self.joint_indices] + return to_tensor([result[self.joint_indices]]) else: return None diff --git a/mani_skill2/agents/robots/fetch/__init__.py b/mani_skill2/agents/robots/fetch/__init__.py index ff32d0c84..92e483603 100644 --- a/mani_skill2/agents/robots/fetch/__init__.py +++ b/mani_skill2/agents/robots/fetch/__init__.py @@ -1 +1 @@ -from .fetch import Fetch +from .fetch import Fetch, FETCH_UNIQUE_COLLISION_BIT diff --git a/mani_skill2/agents/robots/fetch/fetch.py b/mani_skill2/agents/robots/fetch/fetch.py index a05518c17..b8d9f00c2 100644 --- a/mani_skill2/agents/robots/fetch/fetch.py +++ b/mani_skill2/agents/robots/fetch/fetch.py @@ -1,21 +1,31 @@ from copy import deepcopy +from typing import Dict, Tuple import numpy as np import sapien import sapien.physx as physx +import torch from mani_skill2 import PACKAGE_ASSET_DIR from mani_skill2.agents.base_agent import BaseAgent from mani_skill2.agents.controllers import * from mani_skill2.sensors.camera import CameraConfig -from mani_skill2.utils.common import np_compute_angle_between +from mani_skill2.utils.common import compute_angle_between, np_compute_angle_between from mani_skill2.utils.sapien_utils import ( compute_total_impulse, get_actor_contacts, get_obj_by_name, get_pairwise_contact_impulse, ) +from mani_skill2.utils.structs.actor import Actor +from mani_skill2.utils.sapien_utils import to_tensor +from mani_skill2.utils.structs.base import BaseStruct +from mani_skill2.utils.structs.joint import Joint +from mani_skill2.utils.structs.link import Link +from mani_skill2.utils.structs.pose import Pose +from mani_skill2.utils.structs.types import Array +FETCH_UNIQUE_COLLISION_BIT = 1 << 30 class Fetch(BaseAgent): uid = "fetch" @@ -33,6 +43,19 @@ class Fetch(BaseAgent): ), ), ) + sensor_configs = [ + CameraConfig( + uid="fetch_head", + p=[0, 0, 0], + q=[1, 0, 0, 0], + width=128, + height=128, + fov=1.57, + near=0.01, + far=10, + entity_uid="head_camera_link", + ) + ] def __init__(self, *args, **kwargs): self.arm_joint_names = [ @@ -67,6 +90,12 @@ def __init__(self, *args, **kwargs): self.body_damping = 1e2 self.body_force_limit = 100 + self.base_joint_names = [ + "root_x_axis_joint", + "root_y_axis_joint", + "root_z_rotation_joint", + ] + super().__init__(*args, **kwargs) @property @@ -181,63 +210,53 @@ def controller_configs(self): normalize_action=False, ) + # -------------------------------------------------------------------------- # + # Base + # -------------------------------------------------------------------------- # + base_pd_joint_vel = PDBaseVelControllerConfig( + self.base_joint_names, + lower=[-0.5, -0.5, -3.14], + upper=[0.5, 0.5, 3.14], + damping=1000, + force_limit=500, + ) + + controller_configs = dict( pd_joint_delta_pos=dict( - arm=arm_pd_joint_delta_pos, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_joint_delta_pos, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), pd_joint_pos=dict( - arm=arm_pd_joint_pos, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_joint_pos, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), pd_ee_delta_pos=dict( - arm=arm_pd_ee_delta_pos, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_ee_delta_pos, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), pd_ee_delta_pose=dict( - arm=arm_pd_ee_delta_pose, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_ee_delta_pose, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), pd_ee_delta_pose_align=dict( - arm=arm_pd_ee_delta_pose_align, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_ee_delta_pose_align, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), # TODO(jigu): how to add boundaries for the following controllers pd_joint_target_delta_pos=dict( - arm=arm_pd_joint_target_delta_pos, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_joint_target_delta_pos, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), pd_ee_target_delta_pos=dict( - arm=arm_pd_ee_target_delta_pos, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_ee_target_delta_pos, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), pd_ee_target_delta_pose=dict( - arm=arm_pd_ee_target_delta_pose, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_ee_target_delta_pose, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), # Caution to use the following controllers pd_joint_vel=dict( - arm=arm_pd_joint_vel, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_joint_vel, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), pd_joint_pos_vel=dict( - arm=arm_pd_joint_pos_vel, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_joint_pos_vel, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), pd_joint_delta_pos_vel=dict( - arm=arm_pd_joint_delta_pos_vel, - gripper=gripper_pd_joint_pos, - body=body_pd_joint_pos, + arm=arm_pd_joint_delta_pos_vel, gripper=gripper_pd_joint_pos, body=body_pd_joint_pos, base=base_pd_joint_vel, ), ) @@ -245,46 +264,110 @@ def controller_configs(self): return deepcopy_dict(controller_configs) def _after_init(self): - self.finger1_link = get_obj_by_name( + self.finger1_link: Link = get_obj_by_name( self.robot.get_links(), "l_gripper_finger_link" ) - self.finger2_link = get_obj_by_name( + self.finger2_link: Link = get_obj_by_name( self.robot.get_links(), "r_gripper_finger_link" ) - self.tcp = get_obj_by_name(self.robot.get_links(), self.ee_link_name) - - def is_grasping(self, object: sapien.Entity = None, min_impulse=1e-6, max_angle=85): - contacts = self.scene.get_contacts() - if object is None: - finger1_contacts = get_actor_contacts(contacts, self.finger1_link) - finger2_contacts = get_actor_contacts(contacts, self.finger2_link) - return ( - np.linalg.norm(compute_total_impulse(finger1_contacts)) >= min_impulse - and np.linalg.norm(compute_total_impulse(finger2_contacts)) - >= min_impulse - ) - else: - limpulse = get_pairwise_contact_impulse(contacts, self.finger1_link, object) - rimpulse = get_pairwise_contact_impulse(contacts, self.finger2_link, object) + self.tcp: Link = get_obj_by_name( + self.robot.get_links(), self.ee_link_name + ) - # direction to open the gripper - ldirection = -self.finger1_link.pose.to_transformation_matrix()[:3, 1] - rdirection = self.finger2_link.pose.to_transformation_matrix()[:3, 1] + self.base_link: Link = get_obj_by_name( + self.robot.get_links(), "base_link" + ) + self.l_wheel_link: Link = get_obj_by_name( + self.robot.get_links(), "l_wheel_link" + ) + self.r_wheel_link: Link = get_obj_by_name( + self.robot.get_links(), "r_wheel_link" + ) + for link in [self.base_link, self.l_wheel_link, self.r_wheel_link]: + cs = link._bodies[0].get_collision_shapes()[0] + cg = cs.get_collision_groups() + cg[2] = FETCH_UNIQUE_COLLISION_BIT + cs.set_collision_groups(cg) - # angle between impulse and open direction - langle = np_compute_angle_between(ldirection, limpulse) - rangle = np_compute_angle_between(rdirection, rimpulse) + self.queries: Dict[str, Tuple[physx.PhysxGpuContactQuery, Tuple[int]]] = dict() - lflag = ( - np.linalg.norm(limpulse) >= min_impulse - and np.rad2deg(langle) <= max_angle + def is_grasping(self, object: Actor = None, min_impulse=1e-6, max_angle=85): + # TODO (stao): is_grasping code needs to be updated for new GPU sim + if physx.is_gpu_enabled(): + if object.name not in self.queries: + body_pairs = list(zip(self.finger1_link._bodies, object._bodies)) + body_pairs += list(zip(self.finger2_link._bodies, object._bodies)) + self.queries[object.name] = ( + self.scene.px.gpu_create_contact_query(body_pairs), + (len(object._bodies), 3), + ) + print(f"Create query for Fetch grasp({object.name})") + query, contacts_shape = self.queries[object.name] + self.scene.px.gpu_query_contacts(query) + # query.cuda_contacts # (num_unique_pairs * num_envs, 3) + contacts = query.cuda_contacts.clone().reshape((-1, *contacts_shape)) + lforce = torch.linalg.norm(contacts[0], axis=1) + rforce = torch.linalg.norm(contacts[1], axis=1) + + # NOTE (stao): 0.5 * time_step is a decent value when tested on a pick cube task. + min_force = 0.5 * self.scene.px.timestep + + # direction to open the gripper + ldirection = -self.finger1_link.pose.to_transformation_matrix()[..., :3, 1] + rdirection = self.finger2_link.pose.to_transformation_matrix()[..., :3, 1] + langle = compute_angle_between(ldirection, contacts[0]) + rangle = compute_angle_between(rdirection, contacts[1]) + lflag = torch.logical_and( + lforce >= min_force, torch.rad2deg(langle) <= max_angle ) - rflag = ( - np.linalg.norm(rimpulse) >= min_impulse - and np.rad2deg(rangle) <= max_angle + rflag = torch.logical_and( + rforce >= min_force, torch.rad2deg(rangle) <= max_angle ) - return all([lflag, rflag]) + return torch.logical_and(lflag, rflag) + else: + contacts = self.scene.get_contacts() + + if object is None: + finger1_contacts = get_actor_contacts(contacts, self.finger1_link._bodies[0].entity) + finger2_contacts = get_actor_contacts(contacts, self.finger2_link._bodies[0].entity) + return ( + np.linalg.norm(compute_total_impulse(finger1_contacts)) + >= min_impulse + and np.linalg.norm(compute_total_impulse(finger2_contacts)) + >= min_impulse + ) + else: + limpulse = get_pairwise_contact_impulse( + contacts, self.finger1_link._bodies[0].entity, object._bodies[0].entity + ) + rimpulse = get_pairwise_contact_impulse( + contacts, self.finger2_link._bodies[0].entity, object._bodies[0].entity + ) + + # direction to open the gripper + ldirection = -self.finger1_link.pose.to_transformation_matrix()[ + ..., :3, 1 + ] + rdirection = self.finger2_link.pose.to_transformation_matrix()[ + ..., :3, 1 + ] + + # TODO Convert this to batched code + # angle between impulse and open direction + langle = np_compute_angle_between(ldirection[0], limpulse) + rangle = np_compute_angle_between(rdirection[0], rimpulse) + + lflag = ( + np.linalg.norm(limpulse) >= min_impulse + and np.rad2deg(langle) <= max_angle + ) + rflag = ( + np.linalg.norm(rimpulse) >= min_impulse + and np.rad2deg(rangle) <= max_angle + ) + + return all([lflag, rflag]) @staticmethod def build_grasp_pose(approaching, closing, center): @@ -297,23 +380,9 @@ def build_grasp_pose(approaching, closing, center): T[:3, :3] = np.stack([ortho, closing, approaching], axis=1) T[:3, 3] = center return sapien.Pose(T) - - @property - def sensor_configs(self): - return [ - CameraConfig( - uid="fetch_head", - p=[0, 0, 0], - q=[0.9238795, 0, 0.3826834, 0], - width=128, - height=128, - fov=1.57, - near=0.01, - far=10, - entity_uid="head_camera_link", - ) - ] - + @property - def tcp_pose_p(self): - return (self.finger1_link.pose.p + self.finger2_link.pose.p) / 2 + def tcp_pose(self) -> Pose: + p = (self.finger1_link.pose.p + self.finger2_link.pose.p) / 2 + q = (self.finger1_link.pose.q + self.finger2_link.pose.q) / 2 + return Pose.create_from_pq(p=p, q=q) diff --git a/mani_skill2/assets/robots/fetch/fetch.urdf b/mani_skill2/assets/robots/fetch/fetch.urdf index 974556644..be5901837 100644 --- a/mani_skill2/assets/robots/fetch/fetch.urdf +++ b/mani_skill2/assets/robots/fetch/fetch.urdf @@ -1,4 +1,44 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/mani_skill2/envs/pick_and_place/base_env.py b/mani_skill2/envs/pick_and_place/base_env.py index 2b93cff00..8751ef717 100644 --- a/mani_skill2/envs/pick_and_place/base_env.py +++ b/mani_skill2/envs/pick_and_place/base_env.py @@ -75,25 +75,11 @@ def _initialize_agent(self): self.agent.reset(qpos) self.agent.robot.set_pose(Pose([-0.562, 0, 0])) elif self.robot_uid == "fetch": - # TODO (arth): Better fetch init qpos = np.array( - [ - 0.386, - 0, - 0, - 0, - -np.pi / 4, - 0, - np.pi / 4, - 0, - np.pi / 3, - 0, - 0.015, - 0.015, - ] + [0, 0, 0, 0.386, 0, 0, 0, -np.pi / 4, 0, np.pi / 4, 0, np.pi / 3, 0, 0.015, 0.015] ) self.agent.reset(qpos) - self.agent.robot.set_pose(Pose([-0.82, 0, -0.920])) + self.agent.robot.set_pose(sapien.Pose([-0.82, 0, -0.920])) else: raise NotImplementedError(self.robot_uid) diff --git a/mani_skill2/envs/sapien_env.py b/mani_skill2/envs/sapien_env.py index 33a1bffe3..36332c12c 100644 --- a/mani_skill2/envs/sapien_env.py +++ b/mani_skill2/envs/sapien_env.py @@ -32,7 +32,7 @@ get_component_meshes, merge_meshes, ) -from mani_skill2.utils.sapien_utils import get_obj_by_type, to_numpy, to_tensor +from mani_skill2.utils.sapien_utils import get_obj_by_type, to_numpy, to_tensor, unbatch from mani_skill2.utils.structs.types import Array from mani_skill2.utils.visualization.misc import observations_to_images, tile_images @@ -627,7 +627,11 @@ def step(self, action: Union[None, np.ndarray, Dict]): if self.num_envs == 1: terminated = terminated[0] reward = reward[0] - return obs, reward, terminated, False, info + + if physx.is_gpu_enabled(): + return obs, reward, terminated, torch.Tensor(False), info + else: + return unbatch(obs, reward, terminated.item(), False, to_numpy(info)) def step_action(self, action): set_action = False diff --git a/mani_skill2/utils/sapien_utils.py b/mani_skill2/utils/sapien_utils.py index 2989f45af..e1edb7acd 100644 --- a/mani_skill2/utils/sapien_utils.py +++ b/mani_skill2/utils/sapien_utils.py @@ -35,13 +35,17 @@ def to_tensor(array: Union[torch.Tensor, np.array, Sequence]): elif get_backend_name() == "numpy": if isinstance(array, np.ndarray): return torch.from_numpy(array) + # TODO (arth): better way to address torch "UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow" ? + elif isinstance(array, list) and isinstance(array[0], np.ndarray): + return torch.from_numpy(np.array(array)) + elif np.iterable(array): + return torch.Tensor(array) else: return torch.tensor(array) - -def to_numpy(array: Union[Array, Sequence]): +def _to_numpy(array: Union[Array, Sequence]) -> np.ndarray: if isinstance(array, (dict)): - return {k: to_numpy(v) for k, v in array.items()} + return {k: _to_numpy(v) for k, v in array.items()} if isinstance(array, str): return array if torch is not None: @@ -52,6 +56,30 @@ def to_numpy(array: Union[Array, Sequence]): else: return np.array(array) +def to_numpy(array: Union[Array, Sequence], dtype=None) -> np.ndarray: + array = _to_numpy(array) + if dtype is not None: + return array.astype(dtype) + return array + +def _unbatch(array: Union[Array, Sequence]): + if isinstance(array, (dict)): + return {k: _unbatch(v) for k, v in array.items()} + if isinstance(array, str): + return array + if torch is not None: + if isinstance(array, torch.Tensor): + return array.squeeze(0) + if isinstance(array, np.ndarray): + if np.iterable(array) and array.shape[0] == 1: + return array.squeeze(0) + if isinstance(array, list): + if len(array) == 1: + return array[0] + return array + +def unbatch(*args: Tuple[Union[Array, Sequence]]): + return tuple([_unbatch(x) for x in args]) def clone_tensor(array: Array): if torch is not None and isinstance(array, torch.Tensor): @@ -294,13 +322,13 @@ def get_pairwise_contacts( pairwise_contacts = [] for contact in contacts: if ( - contact.components[0].entity == actor0 - and contact.components[1].entity == actor1 + contact.bodies[0].entity == actor0 + and contact.bodies[1].entity == actor1 ): pairwise_contacts.append((contact, True)) elif ( - contact.components[0].entity == actor1 - and contact.components[1].entity == actor0 + contact.bodies[0].entity == actor1 + and contact.bodies[1].entity == actor0 ): pairwise_contacts.append((contact, False)) return pairwise_contacts @@ -328,9 +356,9 @@ def get_actor_contacts( ) -> List[Tuple[physx.PhysxContact, bool]]: entity_contacts = [] for contact in contacts: - if contact.components[0].entity == actor: + if contact.bodies[0].entity == actor: entity_contacts.append((contact, True)) - elif contact.components[1].entity == actor: + elif contact.bodies[1].entity == actor: entity_contacts.append((contact, False)) return entity_contacts @@ -348,16 +376,16 @@ def get_articulation_contacts( if included_links is None: included_links = links for contact in contacts: - if contact.components[0] in included_links: - if contact.components[1] in links: + if contact.bodies[0] in included_links: + if contact.bodies[1] in links: continue - if contact.components[1].entity in excluded_entities: + if contact.bodies[1].entity in excluded_entities: continue articulation_contacts.append((contact, True)) - elif contact.components[1] in included_links: - if contact.components[0] in links: + elif contact.bodies[1] in included_links: + if contact.bodies[0] in links: continue - if contact.components[0].entity in excluded_entities: + if contact.bodies[0].entity in excluded_entities: continue articulation_contacts.append((contact, False)) return articulation_contacts diff --git a/mani_skill2/utils/scene_builder/table/table_scene_builder.py b/mani_skill2/utils/scene_builder/table/table_scene_builder.py index 8e5564df0..7ff1110de 100644 --- a/mani_skill2/utils/scene_builder/table/table_scene_builder.py +++ b/mani_skill2/utils/scene_builder/table/table_scene_builder.py @@ -78,6 +78,20 @@ def initialize(self): ) self.env.agent.reset(qpos) self.env.agent.robot.set_pose(sapien.Pose([-0.562, 0, 0])) + elif self.env.robot_uid == "fetch": + qpos = np.array( + [0, 0, 0, 0.386, 0, 0, 0, -np.pi / 4, 0, np.pi / 4, 0, np.pi / 3, 0, 0.015, 0.015] + ) + self.env.agent.reset(qpos) + self.env.agent.robot.set_pose(sapien.Pose([-0.82, 0, -self.table_height])) + + from mani_skill2.agents.robots.fetch import FETCH_UNIQUE_COLLISION_BIT + cs = self.ground._objs[0].find_component_by_type( + sapien.physx.PhysxRigidStaticComponent + ).get_collision_shapes()[0] + cg = cs.get_collision_groups() + cg[2] = FETCH_UNIQUE_COLLISION_BIT + cs.set_collision_groups(cg) else: raise NotImplementedError(self.env.robot_uid) diff --git a/mani_skill2/utils/structs/joint.py b/mani_skill2/utils/structs/joint.py index 65deaeded..8f4476129 100644 --- a/mani_skill2/utils/structs/joint.py +++ b/mani_skill2/utils/structs/joint.py @@ -34,6 +34,10 @@ class Joint(BaseStruct[physx.PhysxJointComponent]): _data_index: slice = None name: str = None + # TODO (arth): might need better hash in future but this is fine for now + def __hash__(self): + return hash(self.name) + @classmethod def create( cls,