-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathNode.cpp
417 lines (401 loc) · 10.8 KB
/
Node.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#include"Node.h"
/***************************************************************/
//Node
Node::Node()
{
_isLeaf=false;
_featureIndex=-1;
_threshold=0;
_samples=NULL;
}
Node::~Node()
{
}
void Node::sortIndex(int featureId)
{
float**data=_samples->_dataset;
int*sampleId=_samples->getSampleIndex();
Pair*pairs=new Pair[_samples->getSelectedSampleNum()];
for(int i=0;i<_samples->getSelectedSampleNum();++i)
{
pairs[i].id=sampleId[i];
pairs[i].feature=data[sampleId[i]][featureId];
}
qsort(pairs,_samples->getSelectedSampleNum(),sizeof(Pair),compare_pair);
for(int i=0;i<_samples->getSelectedSampleNum();++i)
{sampleId[i]=pairs[i].id;}
delete[] pairs;
}
int compare_pair( const void* a, const void* b )
{
Pair* arg1 = (Pair*) a;
Pair* arg2 = (Pair*) b;
if( arg1->feature < arg2->feature ) return -1;
else if( arg1->feature == arg2->feature ) return 0;
else return 1;
}
/***************************************************************/
//ClasNode
ClasNode::ClasNode()
:Node()
{
_class=-1;
_prob=0;
}
ClasNode::~ClasNode()
{
if(_probs!=NULL)
{
delete[] _probs;
_probs=NULL;
}
}
void ClasNode::calculateParams()
{
int i=0;
int*sampleId=_samples->getSampleIndex();
int sampleNum=_samples->getSelectedSampleNum();
int classNum=_samples->getClassNum();
float gini=0;
_probs=new float[classNum];
for(i=0;i<classNum;++i)
{_probs[i]=0;}
for(i=0;i<sampleNum;++i)
{_probs[static_cast<int>(_samples->_labels[sampleId[i]])]++;}
for(i=0;i<classNum;++i)
{
float p=_probs[i]/sampleNum;
gini+=(p*p);
}
_gini=1-gini;
}
void ClasNode::calculateInfoGain(Node**nodeArray,int id,float minInfoGain)
{
//some used variables
int i=0,j=0,k=0;
int*sampleId=_samples->getSampleIndex();
int*featureId=_samples->getFeatureIndex();
float**data=_samples->_dataset;
float*labels=_samples->_labels;
int featureNum=_samples->getSelectedFeatureNum();
int sampleNum=_samples->getSelectedSampleNum();
int classNum=_samples->getClassNum();
//the final params need to store
float maxInfoGain=0;
int maxFeatureId=0;
float maxThreshold=0;
float maxGiniLeft=0;
float maxGiniRight=0;
int maxSamplesOnLeft=0;
float*maxProbsLeft=new float[classNum];
float*maxProbsRight=new float[classNum];
for(i=0;i<classNum;++i)
{
maxProbsLeft[i]=0;
maxProbsRight[i]=0;
}
//the params need to store in first loop
float fMaxinfoGain=0;
int fMaxFeatureId=0;
float fMaxThreshold=0;
float fMaxGiniLeft=0;
float fMaxGiniRight=0;
int fMaxSamplesOnLeft=0;
float*fMaxProbsLeft=new float[classNum];
float*fMaxProbsRight=new float[classNum];
//the temp params in inner loop
float giniLeft=0,giniRight=0,infoGain=0;
float*probsLeft=new float[classNum];
float*probsRight=new float[classNum];
for(i=0;i<featureNum;++i) //for every dimension
{
//sort the samples according to the current feature
//this means only exchange the position of the index
//in sampleIndex.the trainset and labels never change
fMaxinfoGain=0;
fMaxFeatureId=featureId[i];
fMaxGiniLeft=0;
fMaxGiniRight=0;
fMaxThreshold=0;
fMaxSamplesOnLeft=0;
for(j=0;j<classNum;++j)
{
fMaxProbsLeft[j]=0;
fMaxProbsRight[j]=0;
}
//sort samples by current feature
sortIndex(featureId[i]);
//initialize the probsLeft&probsRight
for(k=0;k<classNum;++k)
{
probsLeft[k]=0;
probsRight[k]=0;
}
memcpy(probsRight,_probs,sizeof(float)*classNum);
for(j=0;j<sampleNum-1;++j)
{
giniLeft=0;
giniRight=0;
infoGain=0;
probsLeft[static_cast<int>(labels[sampleId[j]])]++;
probsRight[static_cast<int>(labels[sampleId[j]])]--;
//do not do calculation if the nearby samples' feature are too similar(<0.000001)
if((data[sampleId[j+1]][featureId[i]]-data[sampleId[j]][featureId[i]])<0.000001)
{continue;}
for(k=0;k<classNum;++k)
{
float p=probsLeft[k]/(j+1);
giniLeft+=(p*p);
}
giniLeft=1-giniLeft;
for(k=0;k<classNum;++k)
{
float p=probsRight[k]/(sampleNum-j-1);
giniRight+=(p*p);
}
giniRight=1-giniRight;
float leftRatio=(j+1.0)/sampleNum;
float rightRatio=(sampleNum-j-1.0)/sampleNum;
infoGain=_gini-leftRatio*giniLeft-rightRatio*giniRight;
if(infoGain>fMaxinfoGain)
{
fMaxinfoGain=infoGain;
fMaxGiniLeft=giniLeft;
fMaxGiniRight=giniRight;
fMaxThreshold=(data[sampleId[j]][featureId[i]]+data[sampleId[j+1]][featureId[i]])/2;
fMaxSamplesOnLeft=j;
memcpy(fMaxProbsLeft,probsLeft,sizeof(float)*classNum);
memcpy(fMaxProbsRight,probsRight,sizeof(float)*classNum);
}
}
if(fMaxinfoGain>maxInfoGain)
{
maxInfoGain=fMaxinfoGain;
maxGiniLeft=fMaxGiniLeft;
maxGiniRight=fMaxGiniRight;
maxFeatureId=fMaxFeatureId;
maxThreshold=fMaxThreshold;
maxSamplesOnLeft=fMaxSamplesOnLeft;
memcpy(maxProbsLeft,fMaxProbsLeft,sizeof(float)*classNum);
memcpy(maxProbsRight,fMaxProbsRight,sizeof(float)*classNum);
}
}
sortIndex(maxFeatureId);
if(maxInfoGain<minInfoGain)
{createLeaf();}
else
{
_featureIndex=maxFeatureId;
_threshold=maxThreshold;
nodeArray[id*2+1]=new ClasNode();
nodeArray[id*2+2]=new ClasNode();
((ClasNode*)nodeArray[id*2+1])->_gini=maxGiniLeft;
((ClasNode*)nodeArray[id*2+1])->_probs=maxProbsLeft;
((ClasNode*)nodeArray[id*2+2])->_gini=maxGiniRight;
((ClasNode*)nodeArray[id*2+2])->_probs=maxProbsRight;
//assign samples to left and right
Sample*leftSamples=new Sample(_samples,0,maxSamplesOnLeft);
Sample*rightSamples=new Sample(_samples,maxSamplesOnLeft+1,sampleNum-1);
nodeArray[id*2+1]->_samples=leftSamples;
nodeArray[id*2+2]->_samples=rightSamples;
}
delete[] _probs;
_probs=NULL;
delete[] fMaxProbsLeft;
delete[] fMaxProbsRight;
delete[] probsLeft;
delete[] probsRight;
}
void ClasNode::createLeaf()
{
_class=0;
_prob=_probs[0];
for(int i=1;i<_samples->getClassNum();++i)
{
if(_probs[i]>_prob)
{
_class=i;
_prob=_probs[i];
}
}
_prob/=_samples->getSelectedSampleNum();
_isLeaf=true;
}
int ClasNode::predict(float*data,int id)
{
if(data[_featureIndex]<_threshold)
{return id*2+1;}
else
{return id*2+2;}
}
void ClasNode::getResult(Result&r)
{
r.label=_class;
r.prob=_prob;
}
/***************************************************************/
//RegrNode
RegrNode::RegrNode()
:Node()
{
_value=0;
}
RegrNode::~RegrNode()
{}
void RegrNode::calculateParams()
{
int i=0;
int*labelId=_samples->getSampleIndex();
int sampleNum=_samples->getSelectedSampleNum();
double mean=0,variance=0;
for(i=0;i<sampleNum;++i)
{mean+=_samples->_labels[labelId[i]];}
mean/=sampleNum;
for(i=0;i<sampleNum;++i)
{
float diff=_samples->_labels[labelId[i]]-mean;
variance+=diff*diff;
}
_mean=mean;
_variance=variance/sampleNum;
}
void RegrNode::calculateInfoGain(Node**nodeArray,int id,float minInfoGain)
{
//some used variables
int i=0,j=0,k=0;
int*sampleId=_samples->getSampleIndex();
int*featureId=_samples->getFeatureIndex();
float**data=_samples->_dataset;
float*labels=_samples->_labels;
int featureNum=_samples->getSelectedFeatureNum();
int sampleNum=_samples->getSelectedSampleNum();
//the final params need to store
float maxInfoGain=0;
int maxFeatureId=0;
float maxThreshold=0;
float maxVarLeft=0;
float maxVarRight=0;
int maxSamplesOnLeft=0;
float maxMeanLeft=0;
float maxMeanRight=0;
//the params need to store in first loop
float fMaxinfoGain=0;
int fMaxFeatureId=0;
float fMaxThreshold=0;
float fMaxVarLeft=0;
float fMaxVarRight=0;
int fMaxSamplesOnLeft=0;
float fMaxMeanLeft=0;
float fMaxMeanRight=0;
//the temp params in inner loop
float infoGain=0;
float varLeft=0,varRight=0;
float meanLeft=0,meanRight=0;
for(i=0;i<featureNum;++i) //for every dimension
{
//sort the samples according to the current feature
//this means only exchange the position of the index
//in sampleIndex.the trainset and labels never change
fMaxinfoGain=0;
fMaxFeatureId=featureId[i];
fMaxVarLeft=0;
fMaxVarRight=0;
fMaxMeanLeft=0;
fMaxMeanRight=0;
fMaxThreshold=0;
fMaxSamplesOnLeft=0;
//sort the samples by the current selected feature
sortIndex(featureId[i]);
//initialize the probsLeft&probsRight
meanLeft=0;
meanRight=_mean;
for(j=0;j<sampleNum-1;++j)
{
varLeft=0;
varRight=0;
infoGain=0;
//recalculate the current mean for left and right
meanLeft=(meanLeft*j+labels[sampleId[j]])/(j+1);
meanRight=(meanRight*(sampleNum-j)-labels[sampleId[j]])/(sampleNum-j-1);
//the difference is too tiny,ignore
if((data[sampleId[j+1]][featureId[i]]-data[sampleId[j]][featureId[i]])<0.000001)
{continue;}
for(k=0;k<=j;++k)
{
float diff=labels[sampleId[k]]-meanLeft;
varLeft+=diff*diff;
}
varLeft/=(j+1);
for(k=j+1;k<sampleNum;++k)
{
float diff=labels[sampleId[k]]-meanRight;
varRight+=diff*diff;
}
varRight/=(sampleNum-j-1);
//calculate the infoGain to decide to update
float leftRatio=(j+1.0)/sampleNum;
float rightRatio=(sampleNum-j-1.0)/sampleNum;
infoGain=_variance-leftRatio*varLeft-rightRatio*varRight;
if(infoGain>fMaxinfoGain)
{
fMaxinfoGain=infoGain;
fMaxVarLeft=varLeft;
fMaxVarRight=varRight;
fMaxThreshold=(data[sampleId[j]][featureId[i]]+data[sampleId[j+1]][featureId[i]])/2;
fMaxSamplesOnLeft=j;
fMaxMeanLeft=meanLeft;
fMaxMeanRight=meanRight;
}
}
if(fMaxinfoGain>maxInfoGain)
{
maxInfoGain=fMaxinfoGain;
maxVarLeft=fMaxVarLeft;
maxVarRight=fMaxVarRight;
maxFeatureId=fMaxFeatureId;
maxThreshold=fMaxThreshold;
maxSamplesOnLeft=fMaxSamplesOnLeft;
maxMeanLeft=fMaxMeanLeft;
maxMeanRight=fMaxMeanRight;
}
}
if(maxInfoGain<minInfoGain)
{createLeaf();}
else
{
//sort the samples so that all the samples
//less than the threshold will be on the left
//and others will be on the right
sortIndex(maxFeatureId);
_featureIndex=maxFeatureId;
_threshold=maxThreshold;
nodeArray[id*2+1]=new RegrNode();
nodeArray[id*2+2]=new RegrNode();
((RegrNode*)nodeArray[id*2+1])->_variance=maxVarLeft;
((RegrNode*)nodeArray[id*2+1])->_mean=maxMeanLeft;
((RegrNode*)nodeArray[id*2+2])->_variance=maxVarRight;
((RegrNode*)nodeArray[id*2+2])->_mean=maxMeanRight;
//assign samples to left and right
Sample*leftSamples=new Sample(_samples,0,maxSamplesOnLeft);
Sample*rightSamples=new Sample(_samples,maxSamplesOnLeft+1,sampleNum-1);
nodeArray[id*2+1]->_samples=leftSamples;
nodeArray[id*2+2]->_samples=rightSamples;
}
}
void RegrNode::createLeaf()
{
_value=_mean;
_isLeaf=true;
}
int RegrNode::predict(float*data,int id)
{
if(data[_featureIndex]<_threshold)
{return id*2+1;}
else
{return id*2+2;}
}
void RegrNode::getResult(Result&r)
{
r.label=0;
r.prob=_value;
}