-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_transformer.py
82 lines (47 loc) · 2.14 KB
/
data_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import IPython
def transform_normal_to_neural_single(normal, minicolumns=2):
neural = np.zeros((normal.size, minicolumns))
#IPython.embed()
for index, value in enumerate(normal):
neural[index, int(value)] = 1
#transformed_input[:, input] = 1
neural = neural.flatten()
return neural
def transform_neural_to_normal_single(neural, minicolumns=2):
hypercolumns = int(np.sum(neural))
normal = np.zeros(hypercolumns)
for index, position in enumerate(np.where(neural == 1)[0]):
normal[index] = position % minicolumns
return normal
def transform_neural_to_normal(neural_matrix, minicolumns=2):
"""
Transforms a matrix from the neural representation to the neural one
:param neural_matrix: the neural representation
:param quantization_value: the number of values that each element is quantized
:return: the normal matrix representation
"""
number_of_elements, number_of_units = neural_matrix.shape
normal_matrix = np.zeros((number_of_elements, number_of_units / minicolumns))
for index, neural in enumerate(neural_matrix):
normal_matrix[index, :] = transform_neural_to_normal_single(neural_matrix[index, :], minicolumns)
return normal_matrix
def transform_singleton_to_normal(number, hypercolumns):
return np.ones(hypercolumns) * number
def produce_pattern(number, hypercolumns, minicolumns):
normal = transform_singleton_to_normal(number, hypercolumns)
return transform_normal_to_neural_single(normal, minicolumns)
def build_ortogonal_patterns(hypercolumns, minicolumns):
"""
This funtions builds the whole set of ortogonal patterns for a given
number of hypercolumns and minicolumns
:param hypercolums: The number of hypercolumns
:param minicolumns: The number of minicolumns
:return: A dictionary with the singleton as the key and the pattern in
neural representation as the value.
"""
patterns = {}
patterns[None] = None
for pattern_number in range(minicolumns):
patterns[pattern_number] = produce_pattern(pattern_number, hypercolumns, minicolumns)
return patterns