-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_functions.py
416 lines (293 loc) · 12.4 KB
/
analysis_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import numpy as np
def create_artificial_matrix(hypercolumns, minicolumns, number_of_patterns, value, inhibition, decay_factor,
extension, diagonal_zero, diagonal_across, diagonal_value, sequence_decay=1.0,
free_attractor=False, free_attractor_value=0.5):
# Creat the small matrix
w_small = np.ones((minicolumns, minicolumns)) * inhibition
for i in range(number_of_patterns):
if i < number_of_patterns - extension - 1:
aux = extension
for j in range(aux):
w_small[i + 1 + j, i] = value * (decay_factor ** j) * (sequence_decay ** i)
else:
aux = number_of_patterns - i - 1
for j in range(aux):
w_small[i + 1 + j, i] = value * (decay_factor ** j) * (sequence_decay ** i)
# Add identity
if diagonal_across:
w_small[:number_of_patterns, :number_of_patterns] += np.diag(np.ones(number_of_patterns) * (diagonal_value - inhibition))
# Add free attractor
if free_attractor:
w_small[number_of_patterns:, number_of_patterns:] = free_attractor_value
# Create the big matrix
w = np.zeros((minicolumns * hypercolumns, minicolumns * hypercolumns))
for j in range(hypercolumns):
for i in range(hypercolumns):
w[i * minicolumns:(i + 1) * minicolumns, j * minicolumns:(j + 1) * minicolumns] = w_small
# Remove diagonal
if diagonal_zero:
w[np.diag_indices_from(w)] = 0
return w
def calculate_distance_from_history(history, patterns, normalize=True):
o = history['o']
distances = np.zeros((o.shape[0], len(patterns)))
for index, state in enumerate(o):
diff = state - patterns
dis = np.linalg.norm(diff, ord=1, axis=1)
distances[index] = dis
if normalize:
distances = distances / np.sum(distances, axis=1)[:, np.newaxis]
return distances
def calculate_angle_from_history(manager):
"""
:param manager: A manager of neural networks, it is used to obtain the history of the activity and
the patterns that were stored
:return: A vector with the distances to the stored patterns. This vector will be as long as the number of points
in time times the number of pattern stores
"""
history = manager.history
patterns_dic = manager.patterns_dic
stored_pattern_indexes = manager.stored_patterns_indexes
o = history['o'][1:]
distances = np.zeros((o.shape[0], manager.nn.minicolumns))
for index, state in enumerate(o):
# Obtain the dot product between the state of the network at each point in time and each pattern
nominator = [np.dot(state, patterns_dic[pattern_index]) for pattern_index in stored_pattern_indexes]
# Obtain the norm of both the state and the patterns to normalize
denominator = [np.linalg.norm(state) * np.linalg.norm(patterns_dic[pattern_index])
for pattern_index in stored_pattern_indexes]
# Get the angles and store them
dis = [a / b for (a, b) in zip(nominator, denominator)]
distances[index, stored_pattern_indexes] = dis
return distances
def calculate_winning_pattern_from_distances(distances):
# Returns the number of the winning pattern
return np.argmax(distances, axis=1)
def calculate_patterns_timings(winning_patterns, dt, remove=0):
"""
:param winning_patterns: A vector with the winning pattern for each point in time
:param dt: the amount that the time moves at each step
:param remove: only add the patterns if they are bigger than this number, used a small number to remove fluctuations
:return: pattern_timins, a vector with information about the winning pattern, how long the network stayed at that
configuration, when it got there, etc
"""
# First we calculate where the change of pattern occurs
change = np.diff(winning_patterns)
indexes = np.where(change != 0)[0]
# Add the end of the sequence
indexes = np.append(indexes, winning_patterns.size - 1)
patterns = winning_patterns[indexes]
patterns_timings = []
previous = 0
for pattern, index in zip(patterns, indexes):
time = (index - previous + 1) * dt # The one is because of the shift with np.change
if time >= remove:
patterns_timings.append((pattern, time, previous*dt, index * dt))
previous = index
return patterns_timings
def calculate_timings(manager, remove=0.010):
angles = calculate_angle_from_history(manager)
winning_patterns = calculate_winning_pattern_from_distances(angles)
timings = calculate_patterns_timings(winning_patterns, manager.dt, remove=remove)
return timings
def calculate_recall_time_quantities(manager, T_recall, T_cue, n, sequences):
success = calculate_recall_success_sequences(manager, T_recall, T_cue, n, sequences)[0]
timings = calculate_timings(manager, remove=0.010)
patterns = [x[0] for x in timings]
# Check correct subsequence recalling
flag = subsequence(patterns, sequences[0])
n_min = min(len(sequences[0]), len(timings))
if flag:
time = [x[1] for x in timings[:n_min]]
total_sequence_time = sum(time)
mean = np.mean(time[1:-1])
std = np.std(time[1:-1])
else:
total_sequence_time = 0
mean = 0
std = 0
return total_sequence_time, mean, std, success, timings
def calculate_compression_factor(manager, training_time, exclude_extrema=True, remove=0):
"""
Calculate compression factors for the timings
:param manager: a Network manager object
:param training_time: the time it took fo train each pattern
:param exclude_extrema: exluce the beggining and the end of the recall (the first one is the cue, the last one
takes a while to die)
:param remove: only take into account states that last longer than the remove value
:return: compression value, a list with the compression values for each list
"""
if exclude_extrema:
indexes = manager.stored_patterns_indexes[1:-1]
else:
indexes = manager.stored_patterns_indexes
timings = calculate_timings(manager, remove=remove)
compression = [training_time / timings[pattern_index][1] for pattern_index in indexes]
return compression
def calculate_recall_success(manager, T_recall, I_cue, T_cue, n, patterns_indexes):
n_patterns = len(patterns_indexes)
successes = 0
for i in range(n):
manager.run_network_recall(T_recall=T_recall, I_cue=I_cue, T_cue=T_cue)
distances = calculate_angle_from_history(manager)
winning = calculate_winning_pattern_from_distances(distances)
timings = calculate_patterns_timings(winning, manager.dt, remove=0.010)
pattern_sequence = [x[0] for x in timings]
if pattern_sequence[:n_patterns] == patterns_indexes:
successes += 1
success_rate = successes * 100.0/ n
return success_rate
def calculate_recall_success_sequences(manager, T_recall, T_cue, n, sequences):
successes = []
total_sequences = len(sequences)
for n_recall in range(total_sequences):
sequence_to_recall = sequences[n_recall]
I_cue = sequence_to_recall[0]
success = calculate_recall_success(manager, T_recall, I_cue, T_cue, n, patterns_indexes=sequence_to_recall)
successes.append(success)
return successes
# Functions to extract connectivity
def calculate_total_connections(manager, from_pattern, to_pattern, ampa=False, normalize=True):
if ampa:
w = manager.nn.w_ampa
else:
w = manager.nn.w
hypercolumns = manager.nn.hypercolumns
minicolumns = manager.nn.minicolumns
from_pattern_j = from_pattern
to_pattern_i = to_pattern
weights = 0.0
pattern_i_indexes = [int(to_pattern_i + i * minicolumns) for i in range(hypercolumns)]
pattern_j_indexes = [int(from_pattern_j + j * minicolumns) for j in range(hypercolumns)]
for j_index in pattern_j_indexes:
weights += w[pattern_i_indexes, j_index].sum()
norm = (hypercolumns * hypercolumns)
if normalize:
weights /= norm
return weights
def calculate_connections_last_pattern_to_free_attractor(manager, ampa=False, normalize=True):
if ampa:
w = manager.nn.w_ampa
else:
w = manager.nn.w
n_patterns = manager.n_patterns
minicolumns = manager.nn.minicolumns
final_pattern = n_patterns - 1
free_attractor_indexes = np.arange(n_patterns, minicolumns, dtype='int')
weights = w[free_attractor_indexes, final_pattern].sum()
norm = len(free_attractor_indexes)
if normalize:
weights /= norm
return weights
def calculate_connections_free_attractor_to_first_pattern(manager, ampa=False, normalize=True):
if ampa:
w = manager.nn.w_ampa
else:
w = manager.nn.w
n_patterns = manager.n_patterns
minicolumns = manager.nn.minicolumns
first_pattern = 0
free_attractor_indexes = np.arange(n_patterns, minicolumns, dtype='int')
weights = w[first_pattern, free_attractor_indexes].sum()
norm = len(free_attractor_indexes)
if normalize:
weights /= norm
return weights
def calculate_connections_first_pattern_to_free_attractor(manager, ampa=False, normalize=True):
if ampa:
w = manager.nn.w_ampa
else:
w = manager.nn.w
n_patterns = manager.n_patterns
minicolumns = manager.nn.minicolumns
first_pattern = 0
free_attractor_indexes = np.arange(n_patterns, minicolumns, dtype='int')
weights = w[free_attractor_indexes, first_pattern].sum()
norm = len(free_attractor_indexes)
if normalize:
weights /= norm
return weights
def calculate_connections_among_free_attractor(manager, ampa=False, normalize=True):
if ampa:
w = manager.nn.w_ampa
else:
w = manager.nn.w
n_patterns = manager.n_patterns
minicolumns = manager.nn.minicolumns
weights = w[n_patterns:minicolumns, n_patterns:minicolumns].sum()
norm = (minicolumns - n_patterns) ** 2
if normalize:
weights /= norm
return weights
def get_excitation(index, w):
total_connectivity_weights = w[index, :]
exc_indexes = total_connectivity_weights > 0
excitation = total_connectivity_weights[exc_indexes]
return excitation
def get_inhibition(index, w):
total_connectivity_weights = w[index, :]
inh_indexes = total_connectivity_weights < 0
inhibition = total_connectivity_weights[inh_indexes]
return inhibition
def calculate_excitation_inhibition_ratio(nn, sequences, ampa=False):
"""
Calculates the average ratio of excitatory to inhibitory weight on the network
:param nn: the neural network
:param sequences: the sequence of indexes
:param ampa: wehther you want the results for ampa or nmda
:return: mean, var and list of ratios
"""
if ampa:
w_use = nn.w_ampa
else:
w_use = nn.w
w = np.copy(w_use)
total_exc = []
total_inh = []
for index in sequences[0]:
excitation = get_excitation(index, w)
inhibition = get_inhibition(index, w)
total_exc.append(np.sum(excitation))
total_inh.append(np.sum(inhibition))
ratios = [x / -y for (x, y) in zip(total_exc, total_inh)]
return np.mean(ratios), np.var(ratios), ratios
def calculate_excitation(nn, sequences, ampa=False):
if ampa:
w_use = nn.w_ampa
else:
w_use = nn.w
w = np.copy(w_use)
total_exc = []
for index in sequences[0]:
excitation = get_excitation(index, w)
total_exc.append(np.sum(excitation))
return np.mean(total_exc), np.var(total_exc), total_exc
def calculate_inhibition(nn, sequences, ampa=False):
if ampa:
w_use = nn.w_ampa
else:
w_use = nn.w
w = np.copy(w_use)
total_inh = []
for index in sequences[0]:
inhibition = get_inhibition(index, w)
total_inh.append(np.sum(inhibition))
return np.mean(total_inh), np.var(total_inh), total_inh
def subsequence(sub, sequence):
"""
Calculates whether sub is a sub-sequence of sequence.
Returns tree if it is the case
:param sub: the sub-sequence
:param sequence: the sequence
:return: bool, true if it is indeed a sub-sequence
"""
flag = True
n_sub =len(sub)
n_sequence = len(sequence)
index = 0
while index < n_sub and index < n_sequence:
if sub[index] != sequence[index]:
flag = False
break
index += 1
return flag