-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathClafer Cheat Sheet.page
464 lines (355 loc) · 9.36 KB
/
Clafer Cheat Sheet.page
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Clafer Cheat Sheet
The cheat sheet is based on the [grammar](https://github.com/gsdlab/clafer/blob/develop/src/clafer.cf) and the [generated syntax documentation](https://github.com/gsdlab/clafer/raw/master/doc/clafer.pdf).
The cheat sheet additionally provides commentary and type information, while sacrificing formality of the grammar.
This document is a copy of [CheatSheet.md](https://github.com/gsdlab/clafer/blob/develop/doc/CheatSheet.md).
## Predefined sets
### Sets of primitive values
`double` is a double precision floating point number (limited support by ChocoSolver backend).
`real` is an algebraic real (not supported by backends)
```
integer
double
real
string
```
### Set of all clafer instances
```
clafer
```
## Declarations of model elements
### Element
A clafer model consists of clafers, enums, constraints, assertions, optimization objectives, and escapes:
`<element>`:
```
<clafer>
<enum>
<constraint>
<assertion>
<objective>
<Alloy escape>
<ChocoSolver escape>
```
### Clafer
A clafer defines a set of its instances.
Clafer nesting defines the nesting (structure) of instances.
The only mandatory part of clafer declaration is `<name>`:.
`<clafer>`:
```
<abstract?> <group cardinality?> <name> <super?> <reference?> <multiplicity?> <initializer?>
<elements*>
```
An abstract clafer does not have any instances directly, only through concrete clafers extending it.
By default, clafers are concrete (not abstract).
`<abstract>`:
```
abstract
```
Group cardinality restricts the valid number of children of the clafer:
`xor` = `1..1`,
`or` = `1..*`,
`mux` = `0..1`,
`opt` = `0..*`,
or a range `n..m`.
The default group cardinality is `0..*`.
`<group cardinality>`:
```
xor
or
mux
opt
<int literal>..<int literal>
```
A clafer inherits group cardinality, children, and reference of its super clafer.
`<super>`:
```
: <name>
```
Instances of a reference clafer point to instances from the target set expression.
When declared using `->` (set), the instances pointed to cannot repeat per each instance of its parent,
whereas duplicate values are allowed when declared using `->>` (bag).
`<reference>`:
```
-> <set expression>
->> <set expression>
```
The number of instances of a clafer per each instance of its parent is restricted by multiplicity.
The default multiplicity depends on the parent clafer's group cardinality:
if the group is `0..*` then the default multiplicity is `1`, otherwise it is `0..1`.
Useful shorthands are
`?` = `0..1`,
`*` = `0..*`
`+` = `1..*`
`<multiplicity>`:
```
?
*
+
<int literal>
<int literal>..<int literal>
<int literal>..*
```
Reference clafers can be given values using an initializer:
constant using `=` and default using `:=` (no backend currently supports default).
`<initializer>`:
```
= <set expression>
:= <set expression>
```
#### Examples
* We declare two concrete clafers, `B` nested under `A`.
Both have group cardinality `0..*`, , no super, no reference, no initializer, and multiplicity `1`.
```
A
B
```
* An abstract clafer `A`,
with group cardinality `xor`,
which inherits from `B`,
whose instances can only point to instances from set `C ++ D`,
whose each instance points to a different instance from set `CD`.
```
abstract xor A : B -> C ++ D 1..* = CD
```
### Enum
An enumeration is syntactic sugar to declare an abstract clafer and concrete clafers inheriting from it to represent its literals.
```
enum <name> = <literal> | <...>
```
#### Examples
An enumeration `A` with literals `B`, `C`, and `D`.
```
enum A = B | C | D
```
which is desugared to
```
abstract A
B : A
C : A
D : A
```
### Constraint
Constraint is a boolean expression that we require to be true.
A constraint can be top-level, meaning it must be true for each instance of the model:
```
[ <boolean expression> ]
```
Or nested, meaning it must be true for each instance of the context clafer:
```
<clafer>
[ <boolean expression> ]
```
A model instance is correct iff all constraints hold.
Constraints are used for instance generation.
### Assertion
An assertion is a boolean expression that we are checking whether it is true for all instances of the model.
A failed assertion means there exists an instance for which the boolean expression is not true.
```
assert [ <boolean expression> ]
```
Assertions are used for verifying universal properties of a model.
### Objective
Objectives guide the instance generation process to minimize or maximize the values of the given numeric expressions.
All objectives in a model are equally important and optimal instances trade a worse value of one objective for an improved value of another one.
Minimize
```
<< minimize <numeric expression> >>
```
Maximize
```
<< maximize <numeric expression> >>
```
## Expressions
### Boolean expressions
These expressions produce either true or false.
There are no true and false literals in the language.
Boolean logic:
`<boolean expression>`:
```
if <boolean expression> then <boolean expression> else <boolean expression>
<boolean expression> <=> <boolean expression>
<boolean expression> => <boolean expression>
<boolean expression> || <boolean expression>
<boolean expression> xor <boolean expression>
<boolean expression> && <boolean expression>
! <boolean expression>
```
Quantified expressions:
Simply quantified:
`lone` means less than one.
`some` means at least one.
`not` is a synonym of `no`.
`<boolean expression>`:
```
lone <set expression>
one <set expression>
some <set expression>
no <set expression>
not <set expression>
```
Quantified with local declarations:
`<boolean expression>`:
```
all disj <local declarations> | <boolean expression>
all <local declarations> | <boolean expression>
one disj <local declarations> | <boolean expression>
one <local declarations> | <boolean expression>
some disj <local declarations> | <boolean expression>
some <local declarations> | <boolean expression>
no disj <local declarations> | <boolean expression>
no <local declarations> | <boolean expression>
```
`<local declarations>`:
```
<name> : <set expression> ; <...>
```
Numeric comparisons:
`<boolean expression>`:
```
<numeric expression> < <numeric expression>
<numeric expression> > <numeric expression>
<numeric expression> <= <numeric expression>
<numeric expression> >= <numeric expression>
```
Overloaded comparisons (can be sets of instances or primitive values):
`<boolean expression>`:
```
<set expression> = <set expression>
<set expression> != <set expression>
<set expression> in <set expression>
<set expression> not in <set expression>
```
### Numeric expressions
`<numeric expression>`:
```
<int literal>
<double literal>
<real literal>
<numeric expression> + <numeric expression>
<numeric expression> - <numeric expression>
<numeric expression> * <numeric expression>
<numeric expression> / <numeric expression>
<numeric expression> % <numeric expression>
- <numeric expression>
sum <numeric expression>
product <numeric expression>
# <set expression>
```
### String expressions
`<string expression>`:
```
"<character>*"
```
### Set expressions
Expressions which result in sets.
`.` is relational join
`,` is a synonym for union `++`.
`<set expression>`:
```
<numeric expression>
<string expression>
<name>
if <boolean expression> then <set expression> else <set expression>
<set expression> ++ <set expression>
<set expression> , <set expression>
<set expression> -- <set expression>
<set expression> ** <set expression>
<set expression> . <relation expression>
```
### Relational expressions
`:>` is range restriction.
`<:` is domain restriction.
`<relation expression>`:
```
<name>
<relation expression> :> <set expression>
<set expression> <: <relation expression>
```
### Identifiers
`this` is a singleton set referring to an instance of the context clafer.
`parent` is a relation from the context clafer to its parent.
`dref` is a relation from the context reference clafer to its target set.
`<identifier>`:
```
<name>
this
parent
dref
```
## Escapes
Escapes allow to write fragments of code in the target language of the clafer compiler: Alloy or ChocoSolver.
### Escape to Alloy
`<Alloy escape>`:
```
[alloy|
<Alloy code>
|]
```
### Escape to ChocoSolver
`<ChocoSolver escape>`:
```
[choco|
<ChocoSolver code>
|]
```
# Backend Compatibility
The following table provides versions in which support for a given feature was added to Alloy-based and Choco-based backend.
<table>
<tr>
<th>Language Feature</th><th>Alloy</th><th>Choco</th>
</tr>
<tr>
<td>Nested abstract clafers</td>
<td>0.3.9</td>
<td>0.4.4</td>
</tr>
<tr>
<td><code>assert [ ... ]</code></td>
<td>0.3.9</td>
<td>0.4.2</td>
</tr>
<tr>
<td><code>product</code></td>
<td> -</td>
<td>0.3.9</td>
</tr>
<tr>
<td>Modulo division <code>%</code></td>
<td>0.3.9</td>
<td>0.4.2</td>
</tr>
<tr>
<td>Group cardinality inheritance</td>
<td>0.3.9</td>
<td>0.4.2</td>
</tr>
<tr>
<td>Reference refinement and redefinition</td>
<td>0.4.0</td>
<td>0.4.4</td>
</tr>
<tr>
<td>Escapes (<code>[alloy| ... |]</code> and <code>[choco| ... |]</code>), <code>dref</code>, and <code>**</code></td>
<td>0.4.1</td>
<td>0.4.1</td>
</tr>
<tr>
<td><code>min</code> and <code>max</code></td>
<td>0.4.3</td>
<td>0.4.2</td>
</tr>
<tr>
<td><code><:</code> and <code>:></code></td>
<td>0.3.0</td>
<td>0.4.2</td>
</tr>
<tr>
<td><code>double</code>, <code>real</code></td>
<td> -</td>
<td> -</td>
</tr>
<tr>
<td>Default initializer <code>:=</code></td>
<td> -</td>
<td> -</td>
</tr>
</table>