-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodularity.hs
128 lines (102 loc) · 3.78 KB
/
modularity.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, TypeSynonymInstances, FlexibleInstances, RankNTypes, ScopedTypeVariables, ImpredicativeTypes #-}
module Modularity where
------------------------------------------------------------------------------
-- modular injection; how modular is Haskell's type inference and checking?
------------------------------------------------------------------------------
injector0 mod = let
enlist x = [x]
in
mod (enlist, 4)
injector (mod :: (((forall a. a -> [a]), t1) -> t)) = let
enlist x = [x]
in
mod (enlist, 4)
-- injection into this version fails
-- forall a. a -> [a] isn't treated as a 'subtype' of a -> [a]
-- I guess Haskell can't figure out that it can instantiate?
somemod0 ((lister :: a -> [a]), _) =
lister 17
{-somemod1 (lister, _) =-}
{-(lister 24, lister 'c')-}
somemod2 ((lister :: forall a. a -> [a]), _) =
(lister 32, \a b -> (lister a, lister b))
-- Haskell really hates polymorphism!
--mod0 = injector somemod0
--mod1 = injector somemod1
-- Wow, Haskell can type mod1 correctly!
-- But it can't type the subterm: (\(lister, _) -> (lister 24, lister 'c'))
-- This subterm is equivalent to somemod1 above that also fails to type
mod1 = injector (\(lister, _) -> (lister 24, lister 'c'))
mod2 = injector somemod2
mod3 = let
enlist x = [x]
in
(enlist 41, enlist 'c', enlist)
------------------------------------------------------------------------------
-- coercion for simulating something like intersection types
------------------------------------------------------------------------------
class Coerce a b | a -> b where
co :: a -> b -> b
co a b = b
class Cocoerce a b | b -> a where
coco :: a -> b -> b
coco a b = b
class Biject a b | a -> b, b -> a where
bi :: a -> b -> b
bi a b = b
class Bleh a b where
bleh :: a -> b
instance Bleh Int String where
bleh = show
instance Bleh String Char where
bleh (c:cs) = c
instance Bleh String Int where
bleh xs = length xs
instance Bleh Bool Char where
bleh True = 'y'
bleh False = 'n'
-- auto-coercing versions of bleh
cobleh arg = co arg $ bleh arg
cocobleh arg = coco arg $ bleh arg
bibleh arg = bi arg $ bleh arg
instance Coerce Int String where
instance Coerce String Char where
instance Coerce Bool Char where
instance Cocoerce Int String where
instance Cocoerce String Char where
instance Cocoerce String Int where
instance Biject Int String where
instance Biject String Char where
--instance Biject Bool Char where
val = 562 :: Int
test00 = cobleh val
--test01 = cocobleh val
test02 = bibleh val
test03 = cobleh val :: String
test04 = cocobleh val :: String
test05 = bibleh val :: String
--test11 = cobleh 74
--test12 = cocobleh 74
--test13 = bibleh 74
--test14 = cobleh 74 :: String
test15 = cocobleh 74 :: String
test16 = bibleh 74 :: String
test20 = bibleh $ bibleh val
test21 = cobleh $ cobleh val
test22 = cocobleh $ cocobleh val :: Char
test23 = cocobleh $ cocobleh 74 :: Char
test24 = bibleh $ bibleh 74 :: Char
------------------------------------------------------------------------------
-- how would implicit propagation of explicit staging work?
------------------------------------------------------------------------------
-- Would like to 'stage' certain functions in order to get the benefit of
-- modular/flow/intersection types; achieved by forcing normalization of
-- 'staged' terms to get an effect similar to let-generalization? I think
-- this would generalize the technique of let-generalization itself:
-- unstage { (\f -> ...use f polymorphically...) literal }
-- becomes equivalent in polymorphic expressiveness to:
-- let f = literal in ...use f polymorphically...
-- without staging, normally the following is the case:
-- (\f -> ...f is monomorphic...) literal
-- polytup :: (a -> c & b -> d) -> a -> b -> (c, d)
polytup f a b = (f a, f b)