diff --git a/examples/binning.ipynb b/examples/binning.ipynb index 4d84d4f..9414a5c 100644 --- a/examples/binning.ipynb +++ b/examples/binning.ipynb @@ -1329,6 +1329,7 @@ "num_bins = 5\n", "pars = jnp.linspace(0, 8, num_bins + 1)\n", "\n", + "\n", "# differentiable significance pipeline\n", "def asimov_pipe(bins, s, b, bandwidth=1e-2):\n", " # restrict bin edges so they don't overlap during optimisation\n", @@ -1394,6 +1395,7 @@ "\n", "from copy import deepcopy\n", "\n", + "\n", "# specify the workspace for a simple model with a three-point background systematic\n", "def correlated_background(signal, bkg, bkg_up, bkg_down):\n", " spec = {\n", @@ -1430,6 +1432,7 @@ "\n", "from pyhf import interpolators\n", "\n", + "\n", "# pipeline to calculate the full CLs for the model, given a number of bins\n", "def pipe(num_bins):\n", " def cls_pipe(bins, s, b, bup, bdown, bandwidth=1e-2, skeleton_model=None):\n", diff --git a/examples/cuts.ipynb b/examples/cuts.ipynb index 95d7ea2..9fe4bbc 100644 --- a/examples/cuts.ipynb +++ b/examples/cuts.ipynb @@ -391,6 +391,7 @@ "from jaxopt import OptaxSolver\n", "from optax import adam\n", "\n", + "\n", "# define something to minimise (1/significance)\n", "def loss(cut):\n", " s_weights = relaxed.cut(sig, cut, slope) + 1e-4\n", diff --git a/examples/neos.ipynb b/examples/neos.ipynb index aadb07a..38d29bc 100644 --- a/examples/neos.ipynb +++ b/examples/neos.ipynb @@ -389,7 +389,6 @@ " scale_factors: dict[str, float],\n", " include_bins: bool = True,\n", ") -> tuple[Array, dict[str, list]]:\n", - "\n", " loss = partial(\n", " pipeline,\n", " nn=nn,\n", diff --git a/examples/simple-analysis-optimisation.ipynb b/examples/simple-analysis-optimisation.ipynb index 1472b9b..eec3c0c 100644 --- a/examples/simple-analysis-optimisation.ipynb +++ b/examples/simple-analysis-optimisation.ipynb @@ -130,7 +130,6 @@ "source": [ "# our analysis pipeline, from phi to p-value\n", "def pipeline(phi, return_yields=False, uncertainty=True):\n", - "\n", " # grab the yields at the value of phi we want\n", " y = yields(phi, uncertainty=uncertainty)\n", "\n",