-
-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy pathplayground.py
116 lines (85 loc) · 4.27 KB
/
playground.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
from torch.optim import Adam
from torch import nn
import matplotlib.pyplot as plt
import numpy as np
from models.definitions.transformer_model import PositionalEncoding
from utils.optimizers_and_distributions import CustomLRAdamOptimizer, LabelSmoothingDistribution, OneHotDistribution
def display(imgs_to_display):
num_display_imgs = 2
assert len(imgs_to_display) == num_display_imgs, f'Expected {num_display_imgs} got {len(imgs_to_display)} images.'
fig = plt.figure(figsize=(10, 5))
title_fontsize = 'x-small'
titles = ['one hot distribution', 'label smoothing distribution']
gs = fig.add_gridspec(1, 2, left=0.02, right=0.98, wspace=0.05, hspace=0.3)
ax = np.zeros(num_display_imgs, dtype=object)
ax[0] = fig.add_subplot(gs[0, 0])
ax[1] = fig.add_subplot(gs[0, 1])
for i in range(num_display_imgs):
ax[i].imshow(imgs_to_display[i])
ax[i].set_title(titles[i], fontsize=title_fontsize)
ax[i].tick_params(which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
plt.show()
def visualize_label_smoothing():
pad_token_id = 0 # index 0 of the vocab corresponds to the pad token
trg_vocab_size = 4 # assume only 4 words in our vocab - a toy example
smooth = LabelSmoothingDistribution(smoothing_value=0.1, pad_token_id=pad_token_id, trg_vocab_size=trg_vocab_size, device='cpu')
one_hot = OneHotDistribution(pad_token_id=pad_token_id, trg_vocab_size=trg_vocab_size)
target = torch.tensor([[1], [2], [3], [0]])
smooth_target_distributions = smooth(target)
one_hot_target_distributions = one_hot(target)
display([one_hot_target_distributions.numpy(), smooth_target_distributions.numpy()])
def visualize_custom_lr_adam():
model = nn.Linear(3, 2) # dummy model - as we need to pass some params into Adam's constructor
num_of_warmup_steps = [2000, 4000] # 4000 was used in the paper
model_dimensions = [512, 1024] # baseline and big model's dimensions
# The base model was trained for 100k steps (Page 7, Chapter 5.2 "Hardware and Schedule"
number_of_simulated_training_steps = 100000
# Try a couple of different warm up steps and base/big model dimensions
lr_data = []
labels = []
for warmup in num_of_warmup_steps:
for model_dimension in model_dimensions:
optimizer = CustomLRAdamOptimizer(
Adam(model.parameters(), betas=(0.9, 0.98), eps=1e-9),
model_dimension,
warmup
)
label = f'warmup:{warmup}_dim:{model_dimension}'
learning_rates = []
# Collect the learning rates
for i in range(number_of_simulated_training_steps):
optimizer.step()
learning_rates.append(optimizer.get_current_learning_rate())
labels.append(label)
lr_data.append(learning_rates)
# Plot data
num_of_steps_to_plot = 20000
for learning_rates, label in zip(lr_data, labels):
plt.plot(learning_rates[:num_of_steps_to_plot], label=label)
plt.legend()
plt.title('Learning rate schedule')
plt.xlabel('number of training steps')
plt.ylabel('learning rate')
plt.show()
def visualize_positional_encodings():
# Create a PositionalEncoding object instance
pe = PositionalEncoding(model_dimension=512, dropout_probability=0.1)
# Extract the positional encodings table
positional_encodings_table = pe.positional_encodings_table.numpy()
# Repeat columns width_mult times for better visualization
shape = positional_encodings_table.shape
data_type = positional_encodings_table.dtype
width_mult = 9 # make it almost square
positional_encodings_img = np.zeros((shape[0], width_mult*shape[1]), dtype=data_type)
for i in range(width_mult):
positional_encodings_img[:, i::width_mult] = positional_encodings_table
# Display the positional encodings table
# Every row in this table gets added to a particular token position
# Row 0 always gets added to 0th token embedding, row 1 gets added to 1st token embedding, etc.
plt.title('Positional encodings')
plt.imshow(positional_encodings_img); plt.show()
if __name__ == "__main__":
# visualize_positional_encodings()
# visualize_custom_lr_adam()
visualize_label_smoothing()