-
-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathreconstruct_image_from_representation.py
180 lines (152 loc) · 10 KB
/
reconstruct_image_from_representation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import utils.utils as utils
from utils.video_utils import create_video_from_intermediate_results
import os
import argparse
import torch
from torch.autograd import Variable
from torch.optim import Adam, LBFGS
import numpy as np
import matplotlib.pyplot as plt
def make_tuning_step(model, optimizer, target_representation, should_reconstruct_content, content_feature_maps_index, style_feature_maps_indices):
# Builds function that performs a step in the tuning loop
def tuning_step(optimizing_img):
# Finds the current representation
set_of_feature_maps = model(optimizing_img)
if should_reconstruct_content:
current_representation = set_of_feature_maps[content_feature_maps_index].squeeze(axis=0)
else:
current_representation = [utils.gram_matrix(fmaps) for i, fmaps in enumerate(set_of_feature_maps) if i in style_feature_maps_indices]
# Computes the loss between current and target representations
loss = 0.0
if should_reconstruct_content:
loss = torch.nn.MSELoss(reduction='mean')(target_representation, current_representation)
else:
for gram_gt, gram_hat in zip(target_representation, current_representation):
loss += (1 / len(target_representation)) * torch.nn.MSELoss(reduction='sum')(gram_gt[0], gram_hat[0])
# Computes gradients
loss.backward()
# Updates parameters and zeroes gradients
optimizer.step()
optimizer.zero_grad()
# Returns the loss
return loss.item(), current_representation
# Returns the function that will be called inside the tuning loop
return tuning_step
def reconstruct_image_from_representation(config):
should_reconstruct_content = config['should_reconstruct_content']
should_visualize_representation = config['should_visualize_representation']
dump_path = os.path.join(config['output_img_dir'], ('c' if should_reconstruct_content else 's') + '_reconstruction_' + config['optimizer'])
dump_path = os.path.join(dump_path, os.path.basename(config['content_img_name']).split('.')[0] if should_reconstruct_content else os.path.basename(config['style_img_name']).split('.')[0])
os.makedirs(dump_path, exist_ok=True)
content_img_path = os.path.join(config['content_images_dir'], config['content_img_name'])
style_img_path = os.path.join(config['style_images_dir'], config['style_img_name'])
img_path = content_img_path if should_reconstruct_content else style_img_path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
img = utils.prepare_img(img_path, config['height'], device)
gaussian_noise_img = np.random.normal(loc=0, scale=90., size=img.shape).astype(np.float32)
white_noise_img = np.random.uniform(-90., 90., img.shape).astype(np.float32)
init_img = torch.from_numpy(white_noise_img).float().to(device)
optimizing_img = Variable(init_img, requires_grad=True)
# indices pick relevant feature maps (say conv4_1, relu1_1, etc.)
neural_net, content_feature_maps_index_name, style_feature_maps_indices_names = utils.prepare_model(config['model'], device)
# don't want to expose everything that's not crucial so some things are hardcoded
num_of_iterations = {'adam': 3000, 'lbfgs': 350}
set_of_feature_maps = neural_net(img)
#
# Visualize feature maps and Gram matrices (depending whether you're reconstructing content or style img)
#
if should_reconstruct_content:
target_content_representation = set_of_feature_maps[content_feature_maps_index_name[0]].squeeze(axis=0)
if should_visualize_representation:
num_of_feature_maps = target_content_representation.size()[0]
print(f'Number of feature maps: {num_of_feature_maps}')
for i in range(num_of_feature_maps):
feature_map = target_content_representation[i].to('cpu').numpy()
feature_map = np.uint8(utils.get_uint8_range(feature_map))
plt.imshow(feature_map)
plt.title(f'Feature map {i+1}/{num_of_feature_maps} from layer {content_feature_maps_index_name[1]} (model={config["model"]}) for {config["content_img_name"]} image.')
plt.show()
filename = f'fm_{config["model"]}_{content_feature_maps_index_name[1]}_{str(i).zfill(config["img_format"][0])}{config["img_format"][1]}'
utils.save_image(feature_map, os.path.join(dump_path, filename))
else:
target_style_representation = [utils.gram_matrix(fmaps) for i, fmaps in enumerate(set_of_feature_maps) if i in style_feature_maps_indices_names[0]]
if should_visualize_representation:
num_of_gram_matrices = len(target_style_representation)
print(f'Number of Gram matrices: {num_of_gram_matrices}')
for i in range(num_of_gram_matrices):
Gram_matrix = target_style_representation[i].squeeze(axis=0).to('cpu').numpy()
Gram_matrix = np.uint8(utils.get_uint8_range(Gram_matrix))
plt.imshow(Gram_matrix)
plt.title(f'Gram matrix from layer {style_feature_maps_indices_names[1][i]} (model={config["model"]}) for {config["style_img_name"]} image.')
plt.show()
filename = f'gram_{config["model"]}_{style_feature_maps_indices_names[1][i]}_{str(i).zfill(config["img_format"][0])}{config["img_format"][1]}'
utils.save_image(Gram_matrix, os.path.join(dump_path, filename))
#
# Start of optimization procedure
#
if config['optimizer'] == 'adam':
optimizer = Adam((optimizing_img,))
target_representation = target_content_representation if should_reconstruct_content else target_style_representation
tuning_step = make_tuning_step(neural_net, optimizer, target_representation, should_reconstruct_content, content_feature_maps_index_name[0], style_feature_maps_indices_names[0])
for it in range(num_of_iterations[config['optimizer']]):
loss, _ = tuning_step(optimizing_img)
with torch.no_grad():
print(f'Iteration: {it}, current {"content" if should_reconstruct_content else "style"} loss={loss:10.8f}')
utils.save_and_maybe_display(optimizing_img, dump_path, config, it, num_of_iterations[config['optimizer']], should_display=False)
elif config['optimizer'] == 'lbfgs':
cnt = 0
# closure is a function required by L-BFGS optimizer
def closure():
nonlocal cnt
optimizer.zero_grad()
loss = 0.0
if should_reconstruct_content:
loss = torch.nn.MSELoss(reduction='mean')(target_content_representation, neural_net(optimizing_img)[content_feature_maps_index_name[0]].squeeze(axis=0))
else:
current_set_of_feature_maps = neural_net(optimizing_img)
current_style_representation = [utils.gram_matrix(fmaps) for i, fmaps in enumerate(current_set_of_feature_maps) if i in style_feature_maps_indices_names[0]]
for gram_gt, gram_hat in zip(target_style_representation, current_style_representation):
loss += (1 / len(target_style_representation)) * torch.nn.MSELoss(reduction='sum')(gram_gt[0], gram_hat[0])
loss.backward()
with torch.no_grad():
print(f'Iteration: {cnt}, current {"content" if should_reconstruct_content else "style"} loss={loss.item()}')
utils.save_and_maybe_display(optimizing_img, dump_path, config, cnt, num_of_iterations[config['optimizer']], should_display=False)
cnt += 1
return loss
optimizer = torch.optim.LBFGS((optimizing_img,), max_iter=num_of_iterations[config['optimizer']], line_search_fn='strong_wolfe')
optimizer.step(closure)
return dump_path
if __name__ == "__main__":
#
# fixed args - don't change these unless you have a good reason (default img locations and img dump format)
#
default_resource_dir = os.path.join(os.path.dirname(__file__), 'data')
content_images_dir = os.path.join(default_resource_dir, 'content-images')
style_images_dir = os.path.join(default_resource_dir, 'style-images')
output_img_dir = os.path.join(default_resource_dir, 'output-images')
img_format = (4, '.jpg') # saves images in the format: %04d.jpg
#
# modifiable args - feel free to play with these (only small subset is exposed by design to avoid cluttering)
#
parser = argparse.ArgumentParser()
parser.add_argument("--should_reconstruct_content", type=bool, help="pick between content or style image reconstruction", default=True)
parser.add_argument("--should_visualize_representation", type=bool, help="visualize feature maps or Gram matrices", default=False)
parser.add_argument("--content_img_name", type=str, help="content image name", default='lion.jpg')
parser.add_argument("--style_img_name", type=str, help="style image name", default='ben_giles.jpg')
parser.add_argument("--height", type=int, help="width of content and style images (-1 keep original)", default=500)
parser.add_argument("--saving_freq", type=int, help="saving frequency for intermediate images (-1 means only final)", default=1)
parser.add_argument("--model", type=str, choices=['vgg16', 'vgg19'], default='vgg19')
parser.add_argument("--optimizer", type=str, choices=['lbfgs', 'adam'], default='lbfgs')
parser.add_argument("--reconstruct_script", type=str, help='dummy param - used in saving func', default=True)
args = parser.parse_args()
# just wrapping settings into a dictionary
optimization_config = dict()
for arg in vars(args):
optimization_config[arg] = getattr(args, arg)
optimization_config['content_images_dir'] = content_images_dir
optimization_config['style_images_dir'] = style_images_dir
optimization_config['output_img_dir'] = output_img_dir
optimization_config['img_format'] = img_format
# reconstruct style or content image purely from their representation
results_path = reconstruct_image_from_representation(optimization_config)
# create_video_from_intermediate_results(results_path, img_format)