-
Notifications
You must be signed in to change notification settings - Fork 849
/
inference.py
385 lines (341 loc) · 15.8 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary for generating predictions over a set of videos."""
from __future__ import print_function
import glob
import heapq
import json
import os
import tarfile
import tempfile
import time
import numpy as np
import readers
from six.moves import urllib
import tensorflow as tf
from tensorflow import app
from tensorflow import flags
from tensorflow import gfile
from tensorflow import logging
from tensorflow.python.lib.io import file_io
import utils
FLAGS = flags.FLAGS
if __name__ == "__main__":
# Input
flags.DEFINE_string(
"train_dir", "", "The directory to load the model files from. We assume "
"that you have already run eval.py onto this, such that "
"inference_model.* files already exist.")
flags.DEFINE_string(
"input_data_pattern", "",
"File glob defining the evaluation dataset in tensorflow.SequenceExample "
"format. The SequenceExamples are expected to have an 'rgb' byte array "
"sequence feature as well as a 'labels' int64 context feature.")
flags.DEFINE_string(
"input_model_tgz", "",
"If given, must be path to a .tgz file that was written "
"by this binary using flag --output_model_tgz. In this "
"case, the .tgz file will be untarred to "
"--untar_model_dir and the model will be used for "
"inference.")
flags.DEFINE_string(
"untar_model_dir", "/tmp/yt8m-model",
"If --input_model_tgz is given, then this directory will "
"be created and the contents of the .tgz file will be "
"untarred here.")
flags.DEFINE_bool(
"segment_labels", False,
"If set, then --input_data_pattern must be frame-level features (but with"
" segment_labels). Otherwise, --input_data_pattern must be aggregated "
"video-level features. The model must also be set appropriately (i.e. to "
"read 3D batches VS 4D batches.")
flags.DEFINE_integer("segment_max_pred", 100000,
"Limit total number of segment outputs per entity.")
flags.DEFINE_string(
"segment_label_ids_file",
"https://raw.githubusercontent.com/google/youtube-8m/master/segment_label_ids.csv",
"The file that contains the segment label ids.")
# Output
flags.DEFINE_string("output_file", "", "The file to save the predictions to.")
flags.DEFINE_string(
"output_model_tgz", "",
"If given, should be a filename with a .tgz extension, "
"the model graph and checkpoint will be bundled in this "
"gzip tar. This file can be uploaded to Kaggle for the "
"top 10 participants.")
flags.DEFINE_integer("top_k", 20, "How many predictions to output per video.")
# Other flags.
flags.DEFINE_integer("batch_size", 512,
"How many examples to process per batch.")
flags.DEFINE_integer("num_readers", 1,
"How many threads to use for reading input files.")
def format_lines(video_ids, predictions, top_k, whitelisted_cls_mask=None):
"""Create an information line the submission file."""
batch_size = len(video_ids)
for video_index in range(batch_size):
video_prediction = predictions[video_index]
if whitelisted_cls_mask is not None:
# Whitelist classes.
video_prediction *= whitelisted_cls_mask
top_indices = np.argpartition(video_prediction, -top_k)[-top_k:]
line = [(class_index, predictions[video_index][class_index])
for class_index in top_indices]
line = sorted(line, key=lambda p: -p[1])
yield (video_ids[video_index] + "," +
" ".join("%i %g" % (label, score) for (label, score) in line) +
"\n").encode("utf8")
def get_input_data_tensors(reader, data_pattern, batch_size, num_readers=1):
"""Creates the section of the graph which reads the input data.
Args:
reader: A class which parses the input data.
data_pattern: A 'glob' style path to the data files.
batch_size: How many examples to process at a time.
num_readers: How many I/O threads to use.
Returns:
A tuple containing the features tensor, labels tensor, and optionally a
tensor containing the number of frames per video. The exact dimensions
depend on the reader being used.
Raises:
IOError: If no files matching the given pattern were found.
"""
with tf.name_scope("input"):
files = gfile.Glob(data_pattern)
if not files:
raise IOError("Unable to find input files. data_pattern='" +
data_pattern + "'")
logging.info("number of input files: " + str(len(files)))
filename_queue = tf.train.string_input_producer(files,
num_epochs=1,
shuffle=False)
examples_and_labels = [
reader.prepare_reader(filename_queue) for _ in range(num_readers)
]
input_data_dict = (tf.train.batch_join(examples_and_labels,
batch_size=batch_size,
allow_smaller_final_batch=True,
enqueue_many=True))
video_id_batch = input_data_dict["video_ids"]
video_batch = input_data_dict["video_matrix"]
num_frames_batch = input_data_dict["num_frames"]
return video_id_batch, video_batch, num_frames_batch
def get_segments(batch_video_mtx, batch_num_frames, segment_size):
"""Get segment-level inputs from frame-level features."""
video_batch_size = batch_video_mtx.shape[0]
max_frame = batch_video_mtx.shape[1]
feature_dim = batch_video_mtx.shape[-1]
padded_segment_sizes = (batch_num_frames + segment_size - 1) // segment_size
padded_segment_sizes *= segment_size
segment_mask = (
0 < (padded_segment_sizes[:, np.newaxis] - np.arange(0, max_frame)))
# Segment bags.
frame_bags = batch_video_mtx.reshape((-1, feature_dim))
segment_frames = frame_bags[segment_mask.reshape(-1)].reshape(
(-1, segment_size, feature_dim))
# Segment num frames.
segment_start_times = np.arange(0, max_frame, segment_size)
num_segments = batch_num_frames[:, np.newaxis] - segment_start_times
num_segment_bags = num_segments.reshape((-1))
valid_segment_mask = num_segment_bags > 0
segment_num_frames = num_segment_bags[valid_segment_mask]
segment_num_frames[segment_num_frames > segment_size] = segment_size
max_segment_num = (max_frame + segment_size - 1) // segment_size
video_idxs = np.tile(
np.arange(0, video_batch_size)[:, np.newaxis], [1, max_segment_num])
segment_idxs = np.tile(segment_start_times, [video_batch_size, 1])
idx_bags = np.stack([video_idxs, segment_idxs], axis=-1).reshape((-1, 2))
video_segment_ids = idx_bags[valid_segment_mask]
return {
"video_batch": segment_frames,
"num_frames_batch": segment_num_frames,
"video_segment_ids": video_segment_ids
}
def inference(reader, train_dir, data_pattern, out_file_location, batch_size,
top_k):
"""Inference function."""
with tf.Session(config=tf.ConfigProto(
allow_soft_placement=True)) as sess, gfile.Open(out_file_location,
"w+") as out_file:
video_id_batch, video_batch, num_frames_batch = get_input_data_tensors(
reader, data_pattern, batch_size)
inference_model_name = "segment_inference_model" if FLAGS.segment_labels else "inference_model"
checkpoint_file = os.path.join(train_dir, "inference_model",
inference_model_name)
if not gfile.Exists(checkpoint_file + ".meta"):
raise IOError("Cannot find %s. Did you run eval.py?" % checkpoint_file)
meta_graph_location = checkpoint_file + ".meta"
logging.info("loading meta-graph: " + meta_graph_location)
if FLAGS.output_model_tgz:
with tarfile.open(FLAGS.output_model_tgz, "w:gz") as tar:
for model_file in glob.glob(checkpoint_file + ".*"):
tar.add(model_file, arcname=os.path.basename(model_file))
tar.add(os.path.join(train_dir, "model_flags.json"),
arcname="model_flags.json")
print("Tarred model onto " + FLAGS.output_model_tgz)
with tf.device("/cpu:0"):
saver = tf.train.import_meta_graph(meta_graph_location,
clear_devices=True)
logging.info("restoring variables from " + checkpoint_file)
saver.restore(sess, checkpoint_file)
input_tensor = tf.get_collection("input_batch_raw")[0]
num_frames_tensor = tf.get_collection("num_frames")[0]
predictions_tensor = tf.get_collection("predictions")[0]
# Workaround for num_epochs issue.
def set_up_init_ops(variables):
init_op_list = []
for variable in list(variables):
if "train_input" in variable.name:
init_op_list.append(tf.assign(variable, 1))
variables.remove(variable)
init_op_list.append(tf.variables_initializer(variables))
return init_op_list
sess.run(
set_up_init_ops(tf.get_collection_ref(tf.GraphKeys.LOCAL_VARIABLES)))
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
num_examples_processed = 0
start_time = time.time()
whitelisted_cls_mask = None
if FLAGS.segment_labels:
final_out_file = out_file
out_file = tempfile.NamedTemporaryFile()
logging.info(
"Segment temp prediction output will be written to temp file: %s",
out_file.name)
if FLAGS.segment_label_ids_file:
whitelisted_cls_mask = np.zeros((predictions_tensor.get_shape()[-1],),
dtype=np.float32)
segment_label_ids_file = FLAGS.segment_label_ids_file
if segment_label_ids_file.startswith("http"):
logging.info("Retrieving segment ID whitelist files from %s...",
segment_label_ids_file)
segment_label_ids_file, _ = urllib.request.urlretrieve(
segment_label_ids_file)
with tf.io.gfile.GFile(segment_label_ids_file) as fobj:
for line in fobj:
try:
cls_id = int(line)
whitelisted_cls_mask[cls_id] = 1.
except ValueError:
# Simply skip the non-integer line.
continue
out_file.write(u"VideoId,LabelConfidencePairs\n".encode("utf8"))
try:
while not coord.should_stop():
video_id_batch_val, video_batch_val, num_frames_batch_val = sess.run(
[video_id_batch, video_batch, num_frames_batch])
if FLAGS.segment_labels:
results = get_segments(video_batch_val, num_frames_batch_val, 5)
video_segment_ids = results["video_segment_ids"]
video_id_batch_val = video_id_batch_val[video_segment_ids[:, 0]]
video_id_batch_val = np.array([
"%s:%d" % (x.decode("utf8"), y)
for x, y in zip(video_id_batch_val, video_segment_ids[:, 1])
])
video_batch_val = results["video_batch"]
num_frames_batch_val = results["num_frames_batch"]
if input_tensor.get_shape()[1] != video_batch_val.shape[1]:
raise ValueError("max_frames mismatch. Please re-run the eval.py "
"with correct segment_labels settings.")
predictions_val, = sess.run([predictions_tensor],
feed_dict={
input_tensor: video_batch_val,
num_frames_tensor: num_frames_batch_val
})
now = time.time()
num_examples_processed += len(video_batch_val)
elapsed_time = now - start_time
logging.info("num examples processed: " + str(num_examples_processed) +
" elapsed seconds: " + "{0:.2f}".format(elapsed_time) +
" examples/sec: %.2f" %
(num_examples_processed / elapsed_time))
for line in format_lines(video_id_batch_val, predictions_val, top_k,
whitelisted_cls_mask):
out_file.write(line)
out_file.flush()
except tf.errors.OutOfRangeError:
logging.info("Done with inference. The output file was written to " +
out_file.name)
finally:
coord.request_stop()
if FLAGS.segment_labels:
# Re-read the file and do heap sort.
# Create multiple heaps.
logging.info("Post-processing segment predictions...")
heaps = {}
out_file.seek(0, 0)
for line in out_file:
segment_id, preds = line.decode("utf8").split(",")
if segment_id == "VideoId":
# Skip the headline.
continue
preds = preds.split(" ")
pred_cls_ids = [int(preds[idx]) for idx in range(0, len(preds), 2)]
pred_cls_scores = [
float(preds[idx]) for idx in range(1, len(preds), 2)
]
for cls, score in zip(pred_cls_ids, pred_cls_scores):
if not whitelisted_cls_mask[cls]:
# Skip non-whitelisted classes.
continue
if cls not in heaps:
heaps[cls] = []
if len(heaps[cls]) >= FLAGS.segment_max_pred:
heapq.heappushpop(heaps[cls], (score, segment_id))
else:
heapq.heappush(heaps[cls], (score, segment_id))
logging.info("Writing sorted segment predictions to: %s",
final_out_file.name)
final_out_file.write("Class,Segments\n")
for cls, cls_heap in heaps.items():
cls_heap.sort(key=lambda x: x[0], reverse=True)
final_out_file.write("%d,%s\n" %
(cls, " ".join([x[1] for x in cls_heap])))
final_out_file.close()
out_file.close()
coord.join(threads)
sess.close()
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
if FLAGS.input_model_tgz:
if FLAGS.train_dir:
raise ValueError("You cannot supply --train_dir if supplying "
"--input_model_tgz")
# Untar.
if not os.path.exists(FLAGS.untar_model_dir):
os.makedirs(FLAGS.untar_model_dir)
tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
FLAGS.train_dir = FLAGS.untar_model_dir
flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
if not file_io.file_exists(flags_dict_file):
raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
flags_dict = json.loads(file_io.FileIO(flags_dict_file, "r").read())
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
flags_dict["feature_names"], flags_dict["feature_sizes"])
if flags_dict["frame_features"]:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if not FLAGS.output_file:
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if not FLAGS.input_data_pattern:
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
if __name__ == "__main__":
app.run()