-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathrefine.h
145 lines (126 loc) · 3.62 KB
/
refine.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/* Copyright (C) 2015, Gabriele Facciolo <[email protected]>,
* Carlo de Franchis <[email protected]>,
* Enric Meinhardt <[email protected]>*/
#include <math.h>
float ParabolafitMinimumOpenCV(const float v[3], float *v_min, float *x_min) {
// P(-1) = v[0]
// P(0) = v[1]
// P(1) = v[2]
// if we can't fit a parabola in the range [-1,1] then we leave the center
if(v[1]>v[0] && v[1]>v[2]) {
*x_min=0;
*v_min=v[1];
return 0;
}
//ax^2 + bx + c = v(x)
//--------------------
//c = v[1]
//a = (v[2] - 2*v[1] + v[0])/2
//b = (v[2] - v[0])/2
float c = v[1];
float b = (v[2]-v[0])/2;
float a = (v[2]-2*v[1]+v[0])/2;
// minimum at: x := -b/2a
// /// THE FOLLOWING 3 LINES DON'T MAKE ANY SENSE!
a*=2; b*=2;
a = a > 1.0 ? a : 1.0;
float x = (-b+a)/(2*a);
if(x > 1) x = 1;
if(x < -1) x = -1;
*v_min = (a*x + b)*x + c;
*x_min = x;
return x;
}
float ParabolafitMinimum(const float v[3], float *v_min, float *x_min) {
// P(-1) = v[0]
// P(0) = v[1]
// P(1) = v[2]
// if we can't fit a parabola in the range [-1,1] then we leave the center
if(v[1]>v[0] && v[1]>v[2]) {
*x_min=0;
*v_min=v[1];
return 0;
}
//ax^2 + bx + c = v(x)
//--------------------
//c = v[1]
//a = (v[2] - 2*v[1] + v[0])/2
//b = (v[2] - v[0])/2
float c = v[1];
float b = (v[2]-v[0])/2;
float a = (v[2]-2*v[1]+v[0])/2;
// minimum at: x := -b/2a
float x = -b/(2*a);
if(x > 1) x = 1;
if(x < -1) x = -1;
*v_min = (a*x + b)*x + c;
*x_min = x;
return x;
}
float VfitMinimum(const float v[3], float *v_min, float *x_min) {
// P(-1) = v[0]
// P(0) = v[1]
// P(1) = v[2]
// if we can't fit a V in the range [-1,1] then we leave the center
if( (v[1] > v[0]) && (v[1] > v[2]) ) {
*v_min = v[1];
*x_min = 0;
return 0;
}
// y = P(1) + (x - 1) * slope
// y = P(-1) + (x - (-1)) * (-slope)
// x = (P(-1) - P(1)) / (2*slope)
float slope = v[2] - v[1];
if ( (v[2] - v[1]) < (v[0] - v[1]) )
slope = v[0] - v[1];
*x_min = (v[0] - v[2]) / (2*slope);
*v_min = v[2] + (*x_min - 1) * slope;
return *x_min;
}
float cubicInterpolate (const float p[4], const float x) {
// assert(x<=1);
// assert(x>=0);
return p[1] + 0.5 * x*(p[2] - p[0] + x*(2.0*p[0] - 5.0*p[1] + 4.0*p[2] - p[3] + x*(3.0*(p[1] - p[2]) + p[3] - p[0])));
}
// find the minimum in the iterval [0,1] of a cubic interpolated function
float CubicfitMinimum(const float p[4], float *out_pmin, float *out_xmin) {
// trivial minima
float pmin,xmin;
if(p[1] < p[2]) {
pmin=p[1];
xmin=0.0;
} else {
pmin=p[2];
xmin=1.0;
}
double a,b,c,z1,z2,discr;
// coefficients of: ax^2 +bx +c = 0
a = 0.5 * 3.0 * (3.0*(p[1] - p[2]) + p[3] - p[0]);
b = 2.0 * p[0] - 5.0*p[1] + 4.0*p[2] - p[3];
c = 0.5 * (p[2] - p[0]);
// discriminant
discr=b*b -4.0 *a *c;
if (discr >=0) {
z1 = (-b+ sqrt(discr))/(2.0*a);
z2 = (-b- sqrt(discr))/(2.0*a);
if(z1>0.0 && z1<1.0) {
float tmp = cubicInterpolate(p,z1);
if(tmp < pmin) {
pmin=tmp;
xmin=z1;
}
}
if(z2>0.0 && z2<1.0) {
float tmp = cubicInterpolate(p,z2);
if(tmp < pmin) {
pmin=tmp;
xmin=z2;
}
}
}
// if( *out_pmin < pmin) {
*out_pmin = pmin;
*out_xmin = xmin;
// }
return pmin;
}