forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultipleKnapsackMip.java
125 lines (114 loc) · 4.17 KB
/
MultipleKnapsackMip.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// Solve a multiple knapsack problem using a MIP solver.
package com.google.ortools.linearsolver.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;
// [END import]
/** Multiple knapsack problem. */
public class MultipleKnapsackMip {
public static void main(String[] args) {
Loader.loadNativeLibraries();
// Instantiate the data problem.
// [START data]
final double[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
final double[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
final int numItems = weights.length;
final int[] allItems = IntStream.range(0, numItems).toArray();
final double[] binCapacities = {100, 100, 100, 100, 100};
final int numBins = binCapacities.length;
final int[] allBins = IntStream.range(0, numBins).toArray();
// [END data]
// [START solver]
// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
System.out.println("Could not create solver SCIP");
return;
}
// [END solver]
// Variables.
// [START variables]
MPVariable[][] x = new MPVariable[numItems][numBins];
for (int i : allItems) {
for (int b : allBins) {
x[i][b] = solver.makeBoolVar("x_" + i + "_" + b);
}
}
// [END variables]
// Constraints.
// [START constraints]
// Each item is assigned to at most one bin.
for (int i : allItems) {
MPConstraint constraint = solver.makeConstraint(0, 1, "");
for (int b : allBins) {
constraint.setCoefficient(x[i][b], 1);
}
}
// The amount packed in each bin cannot exceed its capacity.
for (int b : allBins) {
MPConstraint constraint = solver.makeConstraint(0, binCapacities[b], "");
for (int i : allItems) {
constraint.setCoefficient(x[i][b], weights[i]);
}
}
// [END constraints]
// Objective.
// [START objective]
// Maximize total value of packed items.
MPObjective objective = solver.objective();
for (int i : allItems) {
for (int b : allBins) {
objective.setCoefficient(x[i][b], values[i]);
}
}
objective.setMaximization();
// [END objective]
// [START solve]
final MPSolver.ResultStatus status = solver.solve();
// [END solve]
// [START print_solution]
// Check that the problem has an optimal solution.
if (status == MPSolver.ResultStatus.OPTIMAL) {
System.out.println("Total packed value: " + objective.value());
double totalWeight = 0;
for (int b : allBins) {
double binWeight = 0;
double binValue = 0;
System.out.println("Bin " + b);
for (int i : allItems) {
if (x[i][b].solutionValue() == 1) {
System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
binWeight += weights[i];
binValue += values[i];
}
}
System.out.println("Packed bin weight: " + binWeight);
System.out.println("Packed bin value: " + binValue);
totalWeight += binWeight;
}
System.out.println("Total packed weight: " + totalWeight);
} else {
System.err.println("The problem does not have an optimal solution.");
}
// [END print_solution]
}
private MultipleKnapsackMip() {}
}
// [END program]