forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvariable_values.cc
269 lines (246 loc) · 10.3 KB
/
variable_values.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/variable_values.h"
#include "ortools/graph/iterators.h"
#include "ortools/lp_data/lp_utils.h"
namespace operations_research {
namespace glop {
VariableValues::VariableValues(const GlopParameters& parameters,
const CompactSparseMatrix& matrix,
const RowToColMapping& basis,
const VariablesInfo& variables_info,
const BasisFactorization& basis_factorization,
DualEdgeNorms* dual_edge_norms,
DynamicMaximum<RowIndex>* dual_prices)
: parameters_(parameters),
matrix_(matrix),
basis_(basis),
variables_info_(variables_info),
basis_factorization_(basis_factorization),
dual_edge_norms_(dual_edge_norms),
dual_prices_(dual_prices),
stats_("VariableValues") {}
void VariableValues::SetNonBasicVariableValueFromStatus(ColIndex col) {
SCOPED_TIME_STAT(&stats_);
const DenseRow& lower_bounds = variables_info_.GetVariableLowerBounds();
const DenseRow& upper_bounds = variables_info_.GetVariableUpperBounds();
variable_values_.resize(matrix_.num_cols(), 0.0);
switch (variables_info_.GetStatusRow()[col]) {
case VariableStatus::FIXED_VALUE:
DCHECK_NE(-kInfinity, lower_bounds[col]);
DCHECK_EQ(lower_bounds[col], upper_bounds[col]);
variable_values_[col] = lower_bounds[col];
break;
case VariableStatus::AT_LOWER_BOUND:
DCHECK_NE(-kInfinity, lower_bounds[col]);
variable_values_[col] = lower_bounds[col];
break;
case VariableStatus::AT_UPPER_BOUND:
DCHECK_NE(kInfinity, upper_bounds[col]);
variable_values_[col] = upper_bounds[col];
break;
case VariableStatus::FREE:
LOG(DFATAL) << "SetNonBasicVariableValueFromStatus() shouldn't "
<< "be called on a FREE variable.";
break;
case VariableStatus::BASIC:
LOG(DFATAL) << "SetNonBasicVariableValueFromStatus() shouldn't "
<< "be called on a BASIC variable.";
break;
}
// Note that there is no default value in the switch() statement above to
// get a compile-time error if a value is missing.
}
void VariableValues::ResetAllNonBasicVariableValues(
const DenseRow& free_initial_value) {
const DenseRow& lower_bounds = variables_info_.GetVariableLowerBounds();
const DenseRow& upper_bounds = variables_info_.GetVariableUpperBounds();
const VariableStatusRow& statuses = variables_info_.GetStatusRow();
const ColIndex num_cols = matrix_.num_cols();
variable_values_.resize(num_cols, 0.0);
for (ColIndex col(0); col < num_cols; ++col) {
switch (statuses[col]) {
case VariableStatus::FIXED_VALUE:
ABSL_FALLTHROUGH_INTENDED;
case VariableStatus::AT_LOWER_BOUND:
variable_values_[col] = lower_bounds[col];
break;
case VariableStatus::AT_UPPER_BOUND:
variable_values_[col] = upper_bounds[col];
break;
case VariableStatus::FREE:
variable_values_[col] =
col < free_initial_value.size() ? free_initial_value[col] : 0.0;
break;
case VariableStatus::BASIC:
break;
}
}
}
void VariableValues::RecomputeBasicVariableValues() {
SCOPED_TIME_STAT(&stats_);
DCHECK(basis_factorization_.IsRefactorized());
const RowIndex num_rows = matrix_.num_rows();
scratchpad_.non_zeros.clear();
scratchpad_.values.AssignToZero(num_rows);
for (const ColIndex col : variables_info_.GetNotBasicBitRow()) {
const Fractional value = variable_values_[col];
matrix_.ColumnAddMultipleToDenseColumn(col, -value, &scratchpad_.values);
}
basis_factorization_.RightSolve(&scratchpad_);
for (RowIndex row(0); row < num_rows; ++row) {
variable_values_[basis_[row]] = scratchpad_[row];
}
// This makes sure that they will be recomputed if needed.
dual_prices_->Clear();
}
Fractional VariableValues::ComputeMaximumPrimalResidual() const {
SCOPED_TIME_STAT(&stats_);
scratchpad_.non_zeros.clear();
scratchpad_.values.AssignToZero(matrix_.num_rows());
const ColIndex num_cols = matrix_.num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional value = variable_values_[col];
matrix_.ColumnAddMultipleToDenseColumn(col, value, &scratchpad_.values);
}
return InfinityNorm(scratchpad_.values);
}
Fractional VariableValues::ComputeMaximumPrimalInfeasibility() const {
SCOPED_TIME_STAT(&stats_);
Fractional primal_infeasibility = 0.0;
const ColIndex num_cols = matrix_.num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional col_infeasibility = std::max(
GetUpperBoundInfeasibility(col), GetLowerBoundInfeasibility(col));
primal_infeasibility = std::max(primal_infeasibility, col_infeasibility);
}
return primal_infeasibility;
}
Fractional VariableValues::ComputeSumOfPrimalInfeasibilities() const {
SCOPED_TIME_STAT(&stats_);
Fractional sum = 0.0;
const ColIndex num_cols = matrix_.num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional col_infeasibility = std::max(
GetUpperBoundInfeasibility(col), GetLowerBoundInfeasibility(col));
sum += std::max(0.0, col_infeasibility);
}
return sum;
}
void VariableValues::UpdateOnPivoting(const ScatteredColumn& direction,
ColIndex entering_col, Fractional step) {
SCOPED_TIME_STAT(&stats_);
DCHECK(IsFinite(step));
// Note(user): Some positions are ignored during the primal ratio test:
// - The rows for which direction_[row] < tolerance.
// - The non-zeros of direction_ignored_position_ in case of degeneracy.
// Such positions may result in basic variables going out of their bounds by
// more than the allowed tolerance. We could choose not to update these
// variables or not make them take out-of-bound values, but this would
// introduce artificial errors.
// Note that there is no need to call variables_info_.Update() on basic
// variables when they change values. Note also that the status of
// entering_col will be updated later.
for (const auto e : direction) {
const ColIndex col = basis_[e.row()];
variable_values_[col] -= e.coefficient() * step;
}
variable_values_[entering_col] += step;
}
void VariableValues::UpdateGivenNonBasicVariables(
const std::vector<ColIndex>& cols_to_update, bool update_basic_variables) {
SCOPED_TIME_STAT(&stats_);
if (!update_basic_variables) {
for (ColIndex col : cols_to_update) {
SetNonBasicVariableValueFromStatus(col);
}
return;
}
const RowIndex num_rows = matrix_.num_rows();
initially_all_zero_scratchpad_.values.resize(num_rows, 0.0);
DCHECK(IsAllZero(initially_all_zero_scratchpad_.values));
initially_all_zero_scratchpad_.ClearSparseMask();
bool use_dense = false;
for (ColIndex col : cols_to_update) {
const Fractional old_value = variable_values_[col];
SetNonBasicVariableValueFromStatus(col);
if (use_dense) {
matrix_.ColumnAddMultipleToDenseColumn(
col, variable_values_[col] - old_value,
&initially_all_zero_scratchpad_.values);
} else {
matrix_.ColumnAddMultipleToSparseScatteredColumn(
col, variable_values_[col] - old_value,
&initially_all_zero_scratchpad_);
use_dense = initially_all_zero_scratchpad_.ShouldUseDenseIteration();
}
}
initially_all_zero_scratchpad_.ClearSparseMask();
initially_all_zero_scratchpad_.ClearNonZerosIfTooDense();
basis_factorization_.RightSolve(&initially_all_zero_scratchpad_);
if (initially_all_zero_scratchpad_.non_zeros.empty()) {
for (RowIndex row(0); row < num_rows; ++row) {
variable_values_[basis_[row]] -= initially_all_zero_scratchpad_[row];
}
initially_all_zero_scratchpad_.values.AssignToZero(num_rows);
RecomputeDualPrices();
return;
}
for (const auto e : initially_all_zero_scratchpad_) {
variable_values_[basis_[e.row()]] -= e.coefficient();
initially_all_zero_scratchpad_[e.row()] = 0.0;
}
UpdateDualPrices(initially_all_zero_scratchpad_.non_zeros);
initially_all_zero_scratchpad_.non_zeros.clear();
}
void VariableValues::RecomputeDualPrices() {
SCOPED_TIME_STAT(&stats_);
const RowIndex num_rows = matrix_.num_rows();
dual_prices_->ClearAndResize(num_rows);
dual_prices_->StartDenseUpdates();
const Fractional tolerance = parameters_.primal_feasibility_tolerance();
const DenseColumn& squared_norms = dual_edge_norms_->GetEdgeSquaredNorms();
for (RowIndex row(0); row < num_rows; ++row) {
const ColIndex col = basis_[row];
const Fractional infeasibility = std::max(GetUpperBoundInfeasibility(col),
GetLowerBoundInfeasibility(col));
if (infeasibility > tolerance) {
dual_prices_->DenseAddOrUpdate(
row, Square(infeasibility) / squared_norms[row]);
}
}
}
void VariableValues::UpdateDualPrices(const std::vector<RowIndex>& rows) {
if (dual_prices_->Size() != matrix_.num_rows()) {
RecomputeDualPrices();
return;
}
// Note(user): this is the same as the code in
// RecomputePrimalInfeasibilityInformation(), but we do need the clear part.
SCOPED_TIME_STAT(&stats_);
const Fractional tolerance = parameters_.primal_feasibility_tolerance();
const DenseColumn& squared_norms = dual_edge_norms_->GetEdgeSquaredNorms();
for (const RowIndex row : rows) {
const ColIndex col = basis_[row];
const Fractional infeasibility = std::max(GetUpperBoundInfeasibility(col),
GetLowerBoundInfeasibility(col));
if (infeasibility > tolerance) {
dual_prices_->AddOrUpdate(row,
Square(infeasibility) / squared_norms[row]);
} else {
dual_prices_->Remove(row);
}
}
}
} // namespace glop
} // namespace operations_research