forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdate_row.cc
286 lines (257 loc) · 11.4 KB
/
update_row.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/update_row.h"
#include "ortools/lp_data/lp_utils.h"
namespace operations_research {
namespace glop {
UpdateRow::UpdateRow(const CompactSparseMatrix& matrix,
const CompactSparseMatrix& transposed_matrix,
const VariablesInfo& variables_info,
const RowToColMapping& basis,
const BasisFactorization& basis_factorization)
: matrix_(matrix),
transposed_matrix_(transposed_matrix),
variables_info_(variables_info),
basis_(basis),
basis_factorization_(basis_factorization),
unit_row_left_inverse_(),
non_zero_position_list_(),
non_zero_position_set_(),
coefficient_(),
compute_update_row_(true),
num_operations_(0),
parameters_(),
stats_() {}
void UpdateRow::Invalidate() {
SCOPED_TIME_STAT(&stats_);
compute_update_row_ = true;
}
const ScatteredRow& UpdateRow::GetUnitRowLeftInverse() const {
return unit_row_left_inverse_;
}
const ScatteredRow& UpdateRow::ComputeAndGetUnitRowLeftInverse(
RowIndex leaving_row) {
Invalidate();
basis_factorization_.TemporaryLeftSolveForUnitRow(RowToColIndex(leaving_row),
&unit_row_left_inverse_);
return unit_row_left_inverse_;
}
void UpdateRow::ComputeUnitRowLeftInverse(RowIndex leaving_row) {
SCOPED_TIME_STAT(&stats_);
basis_factorization_.LeftSolveForUnitRow(RowToColIndex(leaving_row),
&unit_row_left_inverse_);
// TODO(user): Refactorize if the estimated accuracy is above a threshold.
IF_STATS_ENABLED(stats_.unit_row_left_inverse_accuracy.Add(
matrix_.ColumnScalarProduct(basis_[leaving_row],
unit_row_left_inverse_.values) -
1.0));
IF_STATS_ENABLED(stats_.unit_row_left_inverse_density.Add(
Density(unit_row_left_inverse_.values)));
}
void UpdateRow::ComputeUpdateRow(RowIndex leaving_row) {
if (!compute_update_row_ && update_row_computed_for_ == leaving_row) return;
compute_update_row_ = false;
update_row_computed_for_ = leaving_row;
ComputeUnitRowLeftInverse(leaving_row);
SCOPED_TIME_STAT(&stats_);
if (parameters_.use_transposed_matrix()) {
// Number of entries that ComputeUpdatesRowWise() will need to look at.
EntryIndex num_row_wise_entries(0);
// Because we are about to do an expensive matrix-vector product, we make
// sure we drop small entries in the vector for the row-wise algorithm. We
// also computes its non-zeros to simplify the code below.
//
// TODO(user): So far we didn't generalize the use of drop tolerances
// everywhere in the solver, so we make sure to not modify
// unit_row_left_inverse_ that is also used elsewhere. However, because of
// that, we will not get the exact same result depending on the algortihm
// used below because the ComputeUpdatesColumnWise() will still use these
// small entries (no complexity changes).
const Fractional drop_tolerance = parameters_.drop_tolerance();
unit_row_left_inverse_filtered_non_zeros_.clear();
if (unit_row_left_inverse_.non_zeros.empty()) {
const ColIndex size = unit_row_left_inverse_.values.size();
for (ColIndex col(0); col < size; ++col) {
if (std::abs(unit_row_left_inverse_.values[col]) > drop_tolerance) {
unit_row_left_inverse_filtered_non_zeros_.push_back(col);
num_row_wise_entries += transposed_matrix_.ColumnNumEntries(col);
}
}
} else {
for (const auto e : unit_row_left_inverse_) {
if (std::abs(e.coefficient()) > drop_tolerance) {
unit_row_left_inverse_filtered_non_zeros_.push_back(e.column());
num_row_wise_entries +=
transposed_matrix_.ColumnNumEntries(e.column());
}
}
}
// Number of entries that ComputeUpdatesColumnWise() will need to look at.
const EntryIndex num_col_wise_entries =
variables_info_.GetNumEntriesInRelevantColumns();
// Note that the thresholds were chosen (more or less) from the result of
// the microbenchmark tests of this file in September 2013.
// TODO(user): automate the computation of these constants at run-time?
const double row_wise = static_cast<double>(num_row_wise_entries.value());
if (row_wise < 0.5 * static_cast<double>(num_col_wise_entries.value())) {
if (row_wise < 1.1 * static_cast<double>(matrix_.num_cols().value())) {
ComputeUpdatesRowWiseHypersparse();
// We use a multiplicative factor because these entries are often widely
// spread in memory. There is also some overhead to each fp operations.
num_operations_ +=
5 * num_row_wise_entries.value() + matrix_.num_cols().value() / 64;
} else {
ComputeUpdatesRowWise();
num_operations_ +=
num_row_wise_entries.value() + matrix_.num_rows().value();
}
} else {
ComputeUpdatesColumnWise();
num_operations_ +=
num_col_wise_entries.value() + matrix_.num_cols().value();
}
} else {
ComputeUpdatesColumnWise();
num_operations_ +=
variables_info_.GetNumEntriesInRelevantColumns().value() +
matrix_.num_cols().value();
}
IF_STATS_ENABLED(stats_.update_row_density.Add(
static_cast<double>(non_zero_position_list_.size()) /
static_cast<double>(matrix_.num_cols().value())));
}
void UpdateRow::ComputeUpdateRowForBenchmark(const DenseRow& lhs,
const std::string& algorithm) {
unit_row_left_inverse_.values = lhs;
ComputeNonZeros(lhs, &unit_row_left_inverse_filtered_non_zeros_);
if (algorithm == "column") {
ComputeUpdatesColumnWise();
} else if (algorithm == "row") {
ComputeUpdatesRowWise();
} else if (algorithm == "row_hypersparse") {
ComputeUpdatesRowWiseHypersparse();
} else {
LOG(DFATAL) << "Unknown algorithm in ComputeUpdateRowForBenchmark(): '"
<< algorithm << "'";
}
}
const DenseRow& UpdateRow::GetCoefficients() const { return coefficient_; }
const ColIndexVector& UpdateRow::GetNonZeroPositions() const {
return non_zero_position_list_;
}
void UpdateRow::SetParameters(const GlopParameters& parameters) {
parameters_ = parameters;
}
// This is optimized for the case when the total number of entries is about
// the same as, or greater than, the number of columns.
void UpdateRow::ComputeUpdatesRowWise() {
SCOPED_TIME_STAT(&stats_);
const ColIndex num_cols = matrix_.num_cols();
coefficient_.AssignToZero(num_cols);
for (ColIndex col : unit_row_left_inverse_filtered_non_zeros_) {
const Fractional multiplier = unit_row_left_inverse_[col];
for (const EntryIndex i : transposed_matrix_.Column(col)) {
const ColIndex pos = RowToColIndex(transposed_matrix_.EntryRow(i));
coefficient_[pos] += multiplier * transposed_matrix_.EntryCoefficient(i);
}
}
non_zero_position_list_.clear();
const Fractional drop_tolerance = parameters_.drop_tolerance();
for (const ColIndex col : variables_info_.GetIsRelevantBitRow()) {
if (std::abs(coefficient_[col]) > drop_tolerance) {
non_zero_position_list_.push_back(col);
}
}
}
// This is optimized for the case when the total number of entries is smaller
// than the number of columns.
void UpdateRow::ComputeUpdatesRowWiseHypersparse() {
SCOPED_TIME_STAT(&stats_);
const ColIndex num_cols = matrix_.num_cols();
non_zero_position_set_.ClearAndResize(num_cols);
coefficient_.resize(num_cols, 0.0);
for (ColIndex col : unit_row_left_inverse_filtered_non_zeros_) {
const Fractional multiplier = unit_row_left_inverse_[col];
for (const EntryIndex i : transposed_matrix_.Column(col)) {
const ColIndex pos = RowToColIndex(transposed_matrix_.EntryRow(i));
const Fractional v = multiplier * transposed_matrix_.EntryCoefficient(i);
if (!non_zero_position_set_.IsSet(pos)) {
// Note that we could create the non_zero_position_list_ here, but we
// prefer to keep the non-zero positions sorted, so using the bitset is
// a good alernative. Of course if the solution is really really sparse,
// then sorting non_zero_position_list_ will be faster.
coefficient_[pos] = v;
non_zero_position_set_.Set(pos);
} else {
coefficient_[pos] += v;
}
}
}
// Only keep in non_zero_position_set_ the relevant positions.
non_zero_position_set_.Intersection(variables_info_.GetIsRelevantBitRow());
non_zero_position_list_.clear();
const Fractional drop_tolerance = parameters_.drop_tolerance();
for (const ColIndex col : non_zero_position_set_) {
// TODO(user): Since the solution is really sparse, maybe storing the
// non-zero coefficients contiguously in a vector is better than keeping
// them as they are. Note however that we will iterate only twice on the
// update row coefficients during an iteration.
if (std::abs(coefficient_[col]) > drop_tolerance) {
non_zero_position_list_.push_back(col);
}
}
}
// Note that we use the same algo as ComputeUpdatesColumnWise() here. The
// others version might be faster, but this is called only once per solve, so
// it shouldn't be too bad.
void UpdateRow::RecomputeFullUpdateRow(RowIndex leaving_row) {
CHECK(!compute_update_row_);
const ColIndex num_cols = matrix_.num_cols();
const Fractional drop_tolerance = parameters_.drop_tolerance();
coefficient_.resize(num_cols, 0.0);
non_zero_position_list_.clear();
// Fills the only position at one in the basic columns.
coefficient_[basis_[leaving_row]] = 1.0;
non_zero_position_list_.push_back(basis_[leaving_row]);
// Fills the non-basic column.
for (const ColIndex col : variables_info_.GetNotBasicBitRow()) {
const Fractional coeff =
matrix_.ColumnScalarProduct(col, unit_row_left_inverse_.values);
if (std::abs(coeff) > drop_tolerance) {
non_zero_position_list_.push_back(col);
coefficient_[col] = coeff;
}
}
}
void UpdateRow::ComputeUpdatesColumnWise() {
SCOPED_TIME_STAT(&stats_);
const ColIndex num_cols = matrix_.num_cols();
const Fractional drop_tolerance = parameters_.drop_tolerance();
coefficient_.resize(num_cols, 0.0);
non_zero_position_list_.clear();
for (const ColIndex col : variables_info_.GetIsRelevantBitRow()) {
// Coefficient of the column right inverse on the 'leaving_row'.
const Fractional coeff =
matrix_.ColumnScalarProduct(col, unit_row_left_inverse_.values);
// Nothing to do if 'coeff' is (almost) zero which does happen due to
// sparsity. Note that it shouldn't be too bad to use a non-zero drop
// tolerance here because even if we introduce some precision issues, the
// quantities updated by this update row will eventually be recomputed.
if (std::abs(coeff) > drop_tolerance) {
non_zero_position_list_.push_back(col);
coefficient_[col] = coeff;
}
}
}
} // namespace glop
} // namespace operations_research