forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeviation.cc
419 lines (387 loc) · 15.9 KB
/
deviation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <memory>
#include <string>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/mathutil.h"
#include "ortools/constraint_solver/constraint_solver.h"
#include "ortools/util/string_array.h"
namespace operations_research {
// Deviation Constraint, a constraint for the average absolute
// deviation to the mean. See paper: Bound Consistent Deviation
// Constraint, Pierre Schaus et. al., CP07
namespace {
class Deviation : public Constraint {
public:
Deviation(Solver* const solver, const std::vector<IntVar*>& vars,
IntVar* const deviation_var, int64_t total_sum)
: Constraint(solver),
vars_(vars),
size_(vars.size()),
deviation_var_(deviation_var),
total_sum_(total_sum),
scaled_vars_assigned_value_(new int64_t[size_]),
scaled_vars_min_(new int64_t[size_]),
scaled_vars_max_(new int64_t[size_]),
scaled_sum_max_(0),
scaled_sum_min_(0),
maximum_(new int64_t[size_]),
overlaps_sup_(new int64_t[size_]),
active_sum_(0),
active_sum_rounded_down_(0),
active_sum_rounded_up_(0),
active_sum_nearest_(0) {
CHECK(deviation_var != nullptr);
}
~Deviation() override {}
void Post() override {
Solver* const s = solver();
Demon* const demon = s->MakeConstraintInitialPropagateCallback(this);
for (int i = 0; i < size_; ++i) {
vars_[i]->WhenRange(demon);
}
deviation_var_->WhenRange(demon);
s->AddConstraint(s->MakeSumEquality(vars_, total_sum_));
}
void InitialPropagate() override {
const int64_t delta_min = BuildMinimalDeviationAssignment();
deviation_var_->SetMin(delta_min);
PropagateBounds(delta_min);
}
std::string DebugString() const override {
return absl::StrFormat("Deviation([%s], deviation_var = %s, sum = %d)",
JoinDebugStringPtr(vars_, ", "),
deviation_var_->DebugString(), total_sum_);
}
void Accept(ModelVisitor* const visitor) const override {
visitor->BeginVisitConstraint(ModelVisitor::kDeviation, this);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kVarsArgument,
vars_);
visitor->VisitIntegerExpressionArgument(ModelVisitor::kTargetArgument,
deviation_var_);
visitor->VisitIntegerArgument(ModelVisitor::kValueArgument, total_sum_);
visitor->EndVisitConstraint(ModelVisitor::kDeviation, this);
}
private:
// Builds an assignment with minimal deviation and assign it to
// scaled_vars_assigned_value_. It returns the minimal deviation:
// sum_i |scaled_vars_assigned_value_[i] - total_sum_|.
int64_t BuildMinimalDeviationAssignment() {
RepairGreedySum(BuildGreedySum(true));
int64_t minimal_deviation = 0;
for (int i = 0; i < size_; ++i) {
minimal_deviation +=
std::abs(scaled_vars_assigned_value_[i] - total_sum_);
}
return minimal_deviation;
}
// Propagates the upper and lower bounds of x[i]'s.
// It assumes the constraint is consistent:
// - the sum constraint is consistent
// - min deviation smaller than max allowed deviation
// min_delta is the minimum possible deviation
void PropagateBounds(int64_t min_delta) {
PropagateBounds(min_delta, true); // Filter upper bounds.
PropagateBounds(min_delta, false); // Filter lower bounds.
}
// Prunes the upper/lower-bound of vars. We apply a mirroing of the
// domains wrt 0 to prune the lower bounds such that we can use the
// same algo to prune both sides of the domains. upperBounds = true
// to prune the upper bounds of vars, false to prune the lower
// bounds.
void PropagateBounds(int64_t min_delta, bool upper_bound) {
// Builds greedy assignment.
const int64_t greedy_sum = BuildGreedySum(upper_bound);
// Repairs assignment and store information to be used when pruning.
RepairSumAndComputeInfo(greedy_sum);
// Does the actual pruning.
PruneVars(min_delta, upper_bound);
}
// Cache min and max values of variables.
void ComputeData(bool upper_bound) {
scaled_sum_max_ = 0;
scaled_sum_min_ = 0;
for (int i = 0; i < size_; ++i) {
scaled_vars_max_[i] =
size_ * (upper_bound ? vars_[i]->Max() : -vars_[i]->Min());
scaled_vars_min_[i] =
size_ * (upper_bound ? vars_[i]->Min() : -vars_[i]->Max());
scaled_sum_max_ += scaled_vars_max_[i];
scaled_sum_min_ += scaled_vars_min_[i];
}
active_sum_ = (!upper_bound ? -total_sum_ : total_sum_);
// down is <= sum.
active_sum_rounded_down_ =
size_ * MathUtil::FloorOfRatio<int64_t>(active_sum_, size_);
// up is > sum, always.
active_sum_rounded_up_ = active_sum_rounded_down_ + size_;
active_sum_nearest_ = (active_sum_rounded_up_ - active_sum_ <=
active_sum_ - active_sum_rounded_down_)
? active_sum_rounded_up_
: active_sum_rounded_down_;
}
// Builds an approximate sum in a greedy way.
int64_t BuildGreedySum(bool upper_bound) {
// Update data structure.
ComputeData(upper_bound);
// Number of constraint should be consistent.
DCHECK_GE(size_ * active_sum_, scaled_sum_min_);
DCHECK_LE(size_ * active_sum_, scaled_sum_max_);
int64_t sum = 0;
// Greedily assign variable to nearest value to average.
overlaps_.clear();
for (int i = 0; i < size_; ++i) {
if (scaled_vars_min_[i] >= active_sum_) {
scaled_vars_assigned_value_[i] = scaled_vars_min_[i];
} else if (scaled_vars_max_[i] <= active_sum_) {
scaled_vars_assigned_value_[i] = scaled_vars_max_[i];
} else {
// Overlapping variable scaled_vars_min_[i] < active_sum_ <
// scaled_vars_max_[i].
scaled_vars_assigned_value_[i] = active_sum_nearest_;
if (active_sum_ % size_ != 0) {
overlaps_.push_back(i);
}
}
sum += scaled_vars_assigned_value_[i];
}
DCHECK_EQ(0, active_sum_rounded_down_ % size_);
DCHECK_LE(active_sum_rounded_down_, active_sum_);
DCHECK_LT(active_sum_ - active_sum_rounded_down_, size_);
return sum;
}
bool Overlap(int var_index) const {
return scaled_vars_min_[var_index] < active_sum_ &&
scaled_vars_max_[var_index] > active_sum_;
}
// Repairs the greedy sum obtained above to get the correct sum.
void RepairGreedySum(int64_t greedy_sum) {
// Useful constant: scaled version of the sum.
const int64_t scaled_total_sum = size_ * active_sum_;
// Step used to make the repair.
const int64_t delta = greedy_sum > scaled_total_sum ? -size_ : size_;
// Change overlapping variables as long as the sum is not
// satisfied and there are overlapping vars, we use that ones to
// repair.
for (int j = 0; j < overlaps_.size() && greedy_sum != scaled_total_sum;
j++) {
scaled_vars_assigned_value_[overlaps_[j]] += delta;
greedy_sum += delta;
}
// Change other variables if the sum is still not satisfied.
for (int i = 0; i < size_ && greedy_sum != scaled_total_sum; ++i) {
const int64_t old_scaled_vars_i = scaled_vars_assigned_value_[i];
if (greedy_sum < scaled_total_sum) {
// Increase scaled_vars_assigned_value_[i] as much as
// possible to fix the too low sum.
scaled_vars_assigned_value_[i] += scaled_total_sum - greedy_sum;
scaled_vars_assigned_value_[i] =
std::min(scaled_vars_assigned_value_[i], scaled_vars_max_[i]);
} else {
// Decrease scaled_vars_assigned_value_[i] as much as
// possible to fix the too high sum.
scaled_vars_assigned_value_[i] -= (greedy_sum - scaled_total_sum);
scaled_vars_assigned_value_[i] =
std::max(scaled_vars_assigned_value_[i], scaled_vars_min_[i]);
}
// Maintain the sum.
greedy_sum += scaled_vars_assigned_value_[i] - old_scaled_vars_i;
}
}
// Computes the maximum values of variables in the case the repaired
// greedy sum is actually the active sum.
void ComputeMaxWhenNoRepair() {
int num_overlap_sum_rounded_up = 0;
if (active_sum_nearest_ == active_sum_rounded_up_) {
num_overlap_sum_rounded_up = overlaps_.size();
}
for (int i = 0; i < size_; ++i) {
maximum_[i] = scaled_vars_assigned_value_[i];
if (Overlap(i) && active_sum_nearest_ == active_sum_rounded_up_ &&
active_sum_ % size_ != 0) {
overlaps_sup_[i] = num_overlap_sum_rounded_up - 1;
} else {
overlaps_sup_[i] = num_overlap_sum_rounded_up;
}
}
}
// Returns the number of variables overlapping the average value,
// assigned to // the average value rounded up that we can/need to
// move.
int ComputeNumOverlapsVariableRoundedUp() {
if (active_sum_ % size_ == 0) {
return 0;
}
int num_overlap_sum_rounded_up = 0;
for (int i = 0; i < size_; ++i) {
if (scaled_vars_assigned_value_[i] > scaled_vars_min_[i] &&
scaled_vars_assigned_value_[i] == active_sum_rounded_up_) {
num_overlap_sum_rounded_up++;
}
}
return num_overlap_sum_rounded_up;
}
// Returns whether we can push the greedy sum across the scaled
// total sum in the same direction as going from the nearest rounded
// sum to the farthest one.
bool CanPushSumAcrossMean(int64_t greedy_sum,
int64_t scaled_total_sum) const {
return (greedy_sum > scaled_total_sum &&
active_sum_nearest_ == active_sum_rounded_up_) ||
(greedy_sum < scaled_total_sum &&
active_sum_nearest_ == active_sum_rounded_down_);
}
// Repairs the sum and store intermediate information to be used
// during pruning.
void RepairSumAndComputeInfo(int64_t greedy_sum) {
const int64_t scaled_total_sum = size_ * active_sum_;
// Computation of key values for the pruning:
// - overlaps_sup_
// - maximum_[i]
if (greedy_sum == scaled_total_sum) { // No repair needed.
ComputeMaxWhenNoRepair();
} else { // Repair and compute maximums.
// Try to repair the sum greedily.
if (CanPushSumAcrossMean(greedy_sum, scaled_total_sum)) {
const int64_t delta = greedy_sum > scaled_total_sum ? -size_ : size_;
for (int j = 0; j < overlaps_.size() && greedy_sum != scaled_total_sum;
++j) {
scaled_vars_assigned_value_[overlaps_[j]] += delta;
greedy_sum += delta;
}
}
const int num_overlap_sum_rounded_up =
ComputeNumOverlapsVariableRoundedUp();
if (greedy_sum == scaled_total_sum) {
// Greedy sum is repaired.
for (int i = 0; i < size_; ++i) {
if (Overlap(i) && num_overlap_sum_rounded_up > 0) {
maximum_[i] = active_sum_rounded_up_;
overlaps_sup_[i] = num_overlap_sum_rounded_up - 1;
} else {
maximum_[i] = scaled_vars_assigned_value_[i];
overlaps_sup_[i] = num_overlap_sum_rounded_up;
}
}
} else if (greedy_sum > scaled_total_sum) {
// scaled_vars_assigned_value_[i] = active_sum_rounded_down_ or
// scaled_vars_assigned_value_[i] <= total_sum
// (there is no more num_overlap_sum_rounded_up).
for (int i = 0; i < size_; ++i) {
maximum_[i] = scaled_vars_assigned_value_[i];
overlaps_sup_[i] = 0;
}
} else { // greedy_sum < scaled_total_sum.
for (int i = 0; i < size_; ++i) {
if (Overlap(i) && num_overlap_sum_rounded_up > 0) {
overlaps_sup_[i] = num_overlap_sum_rounded_up - 1;
} else {
overlaps_sup_[i] = num_overlap_sum_rounded_up;
}
if (scaled_vars_assigned_value_[i] < scaled_vars_max_[i]) {
maximum_[i] =
scaled_vars_assigned_value_[i] + scaled_total_sum - greedy_sum;
} else {
maximum_[i] = scaled_vars_assigned_value_[i];
}
}
}
}
}
// Propagates onto variables with all computed data.
void PruneVars(int64_t min_delta, bool upper_bound) {
// Pruning of upper bound of vars_[i] for var_index in [1..n].
const int64_t increase_down_up = (active_sum_rounded_up_ - active_sum_) -
(active_sum_ - active_sum_rounded_down_);
for (int var_index = 0; var_index < size_; ++var_index) {
// Not bound, and a compatible new max.
if (scaled_vars_max_[var_index] != scaled_vars_min_[var_index] &&
maximum_[var_index] < scaled_vars_max_[var_index]) {
const int64_t new_max =
ComputeNewMax(var_index, min_delta, increase_down_up);
PruneBound(var_index, new_max, upper_bound);
}
}
}
// Computes new max for a variable.
int64_t ComputeNewMax(int var_index, int64_t min_delta,
int64_t increase_down_up) {
int64_t maximum_value = maximum_[var_index];
int64_t current_min_delta = min_delta;
if (overlaps_sup_[var_index] > 0 &&
(current_min_delta +
overlaps_sup_[var_index] * (size_ - increase_down_up) >=
deviation_var_->Max())) {
const int64_t delta = deviation_var_->Max() - current_min_delta;
maximum_value += (size_ * delta) / (size_ - increase_down_up);
return MathUtil::FloorOfRatio<int64_t>(maximum_value, size_);
} else {
if (maximum_value == active_sum_rounded_down_ &&
active_sum_rounded_down_ < active_sum_) {
DCHECK_EQ(0, overlaps_sup_[var_index]);
current_min_delta += size_ + increase_down_up;
if (current_min_delta > deviation_var_->Max()) {
DCHECK_EQ(0, maximum_value % size_);
return maximum_value / size_;
}
maximum_value += size_;
}
current_min_delta +=
overlaps_sup_[var_index] * (size_ - increase_down_up);
maximum_value += size_ * overlaps_sup_[var_index];
// Slope of 2 x n.
const int64_t delta = deviation_var_->Max() - current_min_delta;
maximum_value += delta / 2; // n * delta / (2 * n);
return MathUtil::FloorOfRatio<int64_t>(maximum_value, size_);
}
}
// Sets maximum on var or on its opposite.
void PruneBound(int var_index, int64_t bound, bool upper_bound) {
if (upper_bound) {
vars_[var_index]->SetMax(bound);
} else {
vars_[var_index]->SetMin(-bound);
}
}
std::vector<IntVar*> vars_;
const int size_;
IntVar* const deviation_var_;
const int64_t total_sum_;
std::unique_ptr<int64_t[]> scaled_vars_assigned_value_;
std::unique_ptr<int64_t[]> scaled_vars_min_;
std::unique_ptr<int64_t[]> scaled_vars_max_;
int64_t scaled_sum_max_;
int64_t scaled_sum_min_;
// Stores the variables overlapping the mean value.
std::vector<int> overlaps_;
std::unique_ptr<int64_t[]> maximum_;
std::unique_ptr<int64_t[]> overlaps_sup_;
// These values are updated by ComputeData().
int64_t active_sum_;
int64_t active_sum_rounded_down_;
int64_t active_sum_rounded_up_;
int64_t active_sum_nearest_;
};
} // namespace
Constraint* Solver::MakeDeviation(const std::vector<IntVar*>& vars,
IntVar* const deviation_var,
int64_t total_sum) {
return RevAlloc(new Deviation(this, vars, deviation_var, total_sum));
}
} // namespace operations_research