forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbop_lns.cc
591 lines (524 loc) · 24.4 KB
/
bop_lns.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/bop/bop_lns.h"
#include <deque>
#include <string>
#include <vector>
#include "absl/memory/memory.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/cleanup.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/stl_util.h"
#include "ortools/glop/lp_solver.h"
#include "ortools/lp_data/lp_print_utils.h"
#include "ortools/sat/boolean_problem.h"
#include "ortools/sat/lp_utils.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/util/bitset.h"
namespace operations_research {
namespace bop {
using ::operations_research::glop::ColIndex;
using ::operations_research::glop::DenseRow;
using ::operations_research::glop::LinearProgram;
using ::operations_research::glop::LPSolver;
using ::operations_research::sat::LinearBooleanConstraint;
using ::operations_research::sat::LinearBooleanProblem;
//------------------------------------------------------------------------------
// BopCompleteLNSOptimizer
//------------------------------------------------------------------------------
namespace {
void UseBopSolutionForSatAssignmentPreference(const BopSolution& solution,
sat::SatSolver* solver) {
for (int i = 0; i < solution.Size(); ++i) {
solver->SetAssignmentPreference(
sat::Literal(sat::BooleanVariable(i), solution.Value(VariableIndex(i))),
1.0);
}
}
} // namespace
BopCompleteLNSOptimizer::BopCompleteLNSOptimizer(
const std::string& name, const BopConstraintTerms& objective_terms)
: BopOptimizerBase(name),
state_update_stamp_(ProblemState::kInitialStampValue),
objective_terms_(objective_terms) {}
BopCompleteLNSOptimizer::~BopCompleteLNSOptimizer() {}
BopOptimizerBase::Status BopCompleteLNSOptimizer::SynchronizeIfNeeded(
const ProblemState& problem_state, int num_relaxed_vars) {
if (state_update_stamp_ == problem_state.update_stamp()) {
return BopOptimizerBase::CONTINUE;
}
state_update_stamp_ = problem_state.update_stamp();
// Load the current problem to the solver.
sat_solver_ = absl::make_unique<sat::SatSolver>();
const BopOptimizerBase::Status status =
LoadStateProblemToSatSolver(problem_state, sat_solver_.get());
if (status != BopOptimizerBase::CONTINUE) return status;
// Add the constraint that forces the solver to look for a solution
// at a distance <= num_relaxed_vars from the current one. Note that not all
// the terms appear in this constraint.
//
// TODO(user): if the current solution didn't change, there is no need to
// re-run this optimizer if we already proved UNSAT.
std::vector<sat::LiteralWithCoeff> cst;
for (BopConstraintTerm term : objective_terms_) {
if (problem_state.solution().Value(term.var_id) && term.weight < 0) {
cst.push_back(sat::LiteralWithCoeff(
sat::Literal(sat::BooleanVariable(term.var_id.value()), false), 1.0));
} else if (!problem_state.solution().Value(term.var_id) &&
term.weight > 0) {
cst.push_back(sat::LiteralWithCoeff(
sat::Literal(sat::BooleanVariable(term.var_id.value()), true), 1.0));
}
}
sat_solver_->AddLinearConstraint(
/*use_lower_bound=*/false, sat::Coefficient(0),
/*use_upper_bound=*/true, sat::Coefficient(num_relaxed_vars), &cst);
if (sat_solver_->IsModelUnsat()) return BopOptimizerBase::ABORT;
// It sounds like a good idea to force the solver to find a similar solution
// from the current one. On another side, this is already somewhat enforced by
// the constraint above, so it will need more investigation.
UseBopSolutionForSatAssignmentPreference(problem_state.solution(),
sat_solver_.get());
return BopOptimizerBase::CONTINUE;
}
bool BopCompleteLNSOptimizer::ShouldBeRun(
const ProblemState& problem_state) const {
return problem_state.solution().IsFeasible();
}
BopOptimizerBase::Status BopCompleteLNSOptimizer::Optimize(
const BopParameters& parameters, const ProblemState& problem_state,
LearnedInfo* learned_info, TimeLimit* time_limit) {
SCOPED_TIME_STAT(&stats_);
CHECK(learned_info != nullptr);
CHECK(time_limit != nullptr);
learned_info->Clear();
const BopOptimizerBase::Status sync_status =
SynchronizeIfNeeded(problem_state, parameters.num_relaxed_vars());
if (sync_status != BopOptimizerBase::CONTINUE) {
return sync_status;
}
CHECK(sat_solver_ != nullptr);
const double initial_dt = sat_solver_->deterministic_time();
auto advance_dt = ::absl::MakeCleanup([initial_dt, this, &time_limit]() {
time_limit->AdvanceDeterministicTime(sat_solver_->deterministic_time() -
initial_dt);
});
// Set the parameters for this run.
// TODO(user): Because of this, we actually loose the perfect continuity
// between runs, and the restart policy is resetted... Fix this.
sat::SatParameters sat_params;
sat_params.set_max_number_of_conflicts(
parameters.max_number_of_conflicts_in_random_lns());
sat_params.set_max_time_in_seconds(time_limit->GetTimeLeft());
sat_params.set_max_deterministic_time(time_limit->GetDeterministicTimeLeft());
sat_params.set_random_seed(parameters.random_seed());
sat_solver_->SetParameters(sat_params);
const sat::SatSolver::Status sat_status = sat_solver_->Solve();
if (sat_status == sat::SatSolver::FEASIBLE) {
SatAssignmentToBopSolution(sat_solver_->Assignment(),
&learned_info->solution);
return BopOptimizerBase::SOLUTION_FOUND;
}
if (sat_status == sat::SatSolver::LIMIT_REACHED) {
return BopOptimizerBase::CONTINUE;
}
// Because of the "LNS" constraint, we can't deduce anything about the problem
// in this case.
return BopOptimizerBase::ABORT;
}
//------------------------------------------------------------------------------
// BopAdaptiveLNSOptimizer
//------------------------------------------------------------------------------
namespace {
// Returns false if the limit is reached while solving the LP.
bool UseLinearRelaxationForSatAssignmentPreference(
const BopParameters& parameters, const LinearBooleanProblem& problem,
sat::SatSolver* sat_solver, TimeLimit* time_limit) {
// TODO(user): Re-use the lp_model and lp_solver or build a model with only
// needed constraints and variables.
glop::LinearProgram lp_model;
sat::ConvertBooleanProblemToLinearProgram(problem, &lp_model);
// Set bounds of variables fixed by the sat_solver.
const sat::Trail& propagation_trail = sat_solver->LiteralTrail();
for (int trail_index = 0; trail_index < propagation_trail.Index();
++trail_index) {
const sat::Literal fixed_literal = propagation_trail[trail_index];
const glop::Fractional value = fixed_literal.IsPositive() ? 1.0 : 0.0;
lp_model.SetVariableBounds(ColIndex(fixed_literal.Variable().value()),
value, value);
}
glop::LPSolver lp_solver;
NestedTimeLimit nested_time_limit(time_limit, time_limit->GetTimeLeft(),
parameters.lp_max_deterministic_time());
const glop::ProblemStatus lp_status =
lp_solver.SolveWithTimeLimit(lp_model, nested_time_limit.GetTimeLimit());
if (lp_status != glop::ProblemStatus::OPTIMAL &&
lp_status != glop::ProblemStatus::PRIMAL_FEASIBLE &&
lp_status != glop::ProblemStatus::IMPRECISE) {
// We have no useful information from the LP, we will abort this LNS.
return false;
}
// Set preferences based on the solution of the relaxation.
for (ColIndex col(0); col < lp_solver.variable_values().size(); ++col) {
const double value = lp_solver.variable_values()[col];
sat_solver->SetAssignmentPreference(
sat::Literal(sat::BooleanVariable(col.value()), round(value) == 1),
1 - fabs(value - round(value)));
}
return true;
}
} // namespace
// Note(user): We prefer to start with a really low difficulty as this works
// better for large problem, and for small ones, it will be really quickly
// increased anyway. Maybe a better approach is to start by relaxing something
// like 10 variables instead of having a fixed percentage.
BopAdaptiveLNSOptimizer::BopAdaptiveLNSOptimizer(
const std::string& name, bool use_lp_to_guide_sat,
NeighborhoodGenerator* neighborhood_generator,
sat::SatSolver* sat_propagator)
: BopOptimizerBase(name),
use_lp_to_guide_sat_(use_lp_to_guide_sat),
neighborhood_generator_(neighborhood_generator),
sat_propagator_(sat_propagator),
adaptive_difficulty_(0.001) {
CHECK(sat_propagator != nullptr);
}
BopAdaptiveLNSOptimizer::~BopAdaptiveLNSOptimizer() {}
bool BopAdaptiveLNSOptimizer::ShouldBeRun(
const ProblemState& problem_state) const {
return problem_state.solution().IsFeasible();
}
BopOptimizerBase::Status BopAdaptiveLNSOptimizer::Optimize(
const BopParameters& parameters, const ProblemState& problem_state,
LearnedInfo* learned_info, TimeLimit* time_limit) {
SCOPED_TIME_STAT(&stats_);
CHECK(learned_info != nullptr);
CHECK(time_limit != nullptr);
learned_info->Clear();
// Set-up a sat_propagator_ cleanup task to catch all the exit cases.
const double initial_dt = sat_propagator_->deterministic_time();
auto sat_propagator_cleanup =
::absl::MakeCleanup([initial_dt, this, &learned_info, &time_limit]() {
if (!sat_propagator_->IsModelUnsat()) {
sat_propagator_->SetAssumptionLevel(0);
sat_propagator_->RestoreSolverToAssumptionLevel();
ExtractLearnedInfoFromSatSolver(sat_propagator_, learned_info);
}
time_limit->AdvanceDeterministicTime(
sat_propagator_->deterministic_time() - initial_dt);
});
// For the SAT conflicts limit of each LNS, we follow a luby sequence times
// the base number of conflicts (num_conflicts_). Note that the numbers of the
// Luby sequence are always power of two.
//
// We dynamically change the size of the neighborhood depending on the
// difficulty of the problem. There is one "target" difficulty for each
// different numbers in the Luby sequence. Note that the initial value is
// reused from the last run.
const BopParameters& local_parameters = parameters;
int num_tries = 0; // TODO(user): remove? our limit is 1 by default.
while (!time_limit->LimitReached() &&
num_tries < local_parameters.num_random_lns_tries()) {
// Compute the target problem difficulty and generate the neighborhood.
adaptive_difficulty_.UpdateLuby();
const double difficulty = adaptive_difficulty_.GetParameterValue();
neighborhood_generator_->GenerateNeighborhood(problem_state, difficulty,
sat_propagator_);
++num_tries;
VLOG(2) << num_tries << " difficulty:" << difficulty
<< " luby:" << adaptive_difficulty_.luby_value()
<< " fixed:" << sat_propagator_->LiteralTrail().Index() << "/"
<< problem_state.original_problem().num_variables();
// Special case if the difficulty is too high.
if (!sat_propagator_->IsModelUnsat()) {
if (sat_propagator_->CurrentDecisionLevel() == 0) {
VLOG(2) << "Nothing fixed!";
adaptive_difficulty_.DecreaseParameter();
continue;
}
}
// Since everything is already set-up, we try the sat_propagator_ with
// a really low conflict limit. This allow to quickly skip over UNSAT
// cases without the costly new problem setup.
if (!sat_propagator_->IsModelUnsat()) {
sat::SatParameters params;
params.set_max_number_of_conflicts(
local_parameters.max_number_of_conflicts_for_quick_check());
params.set_max_time_in_seconds(time_limit->GetTimeLeft());
params.set_max_deterministic_time(time_limit->GetDeterministicTimeLeft());
params.set_random_seed(parameters.random_seed());
sat_propagator_->SetParameters(params);
sat_propagator_->SetAssumptionLevel(
sat_propagator_->CurrentDecisionLevel());
const sat::SatSolver::Status status = sat_propagator_->Solve();
if (status == sat::SatSolver::FEASIBLE) {
adaptive_difficulty_.IncreaseParameter();
SatAssignmentToBopSolution(sat_propagator_->Assignment(),
&learned_info->solution);
return BopOptimizerBase::SOLUTION_FOUND;
} else if (status == sat::SatSolver::ASSUMPTIONS_UNSAT) {
// Local problem is infeasible.
adaptive_difficulty_.IncreaseParameter();
continue;
}
}
// Restore to the assumption level.
// This is call is important since all the fixed variable in the
// propagator_ will be used to construct the local problem below.
// Note that calling RestoreSolverToAssumptionLevel() might actually prove
// the infeasibility. It is important to check the UNSAT status afterward.
if (!sat_propagator_->IsModelUnsat()) {
sat_propagator_->RestoreSolverToAssumptionLevel();
}
// Check if the problem is proved UNSAT, by previous the search or the
// RestoreSolverToAssumptionLevel() call above.
if (sat_propagator_->IsModelUnsat()) {
return problem_state.solution().IsFeasible()
? BopOptimizerBase::OPTIMAL_SOLUTION_FOUND
: BopOptimizerBase::INFEASIBLE;
}
// Construct and Solve the LNS subproblem.
//
// Note that we don't use the sat_propagator_ all the way because using a
// clean solver on a really small problem is usually a lot faster (even we
// the time to create the subproblem) that running a long solve under
// assumption (like we did above with a really low conflit limit).
const int conflict_limit =
adaptive_difficulty_.luby_value() *
parameters.max_number_of_conflicts_in_random_lns();
sat::SatParameters params;
params.set_max_number_of_conflicts(conflict_limit);
params.set_max_time_in_seconds(time_limit->GetTimeLeft());
params.set_max_deterministic_time(time_limit->GetDeterministicTimeLeft());
params.set_random_seed(parameters.random_seed());
sat::SatSolver sat_solver;
sat_solver.SetParameters(params);
// Starts by adding the unit clauses to fix the variables.
const LinearBooleanProblem& problem = problem_state.original_problem();
sat_solver.SetNumVariables(problem.num_variables());
for (int i = 0; i < sat_propagator_->LiteralTrail().Index(); ++i) {
CHECK(sat_solver.AddUnitClause(sat_propagator_->LiteralTrail()[i]));
}
// Load the rest of the problem. This will automatically create the small
// local subproblem using the already fixed variable.
//
// TODO(user): modify LoadStateProblemToSatSolver() so that we can call it
// instead and don't need to over constraint the objective below. As a
// bonus we will also have the learned binary clauses.
if (!LoadBooleanProblem(problem, &sat_solver)) {
// The local problem is infeasible.
adaptive_difficulty_.IncreaseParameter();
continue;
}
if (use_lp_to_guide_sat_) {
if (!UseLinearRelaxationForSatAssignmentPreference(
parameters, problem, &sat_solver, time_limit)) {
return BopOptimizerBase::LIMIT_REACHED;
}
} else {
UseObjectiveForSatAssignmentPreference(problem, &sat_solver);
}
if (!AddObjectiveUpperBound(
problem, sat::Coefficient(problem_state.solution().GetCost()) - 1,
&sat_solver)) {
// The local problem is infeasible.
adaptive_difficulty_.IncreaseParameter();
continue;
}
// Solve the local problem.
const sat::SatSolver::Status status = sat_solver.Solve();
time_limit->AdvanceDeterministicTime(sat_solver.deterministic_time());
if (status == sat::SatSolver::FEASIBLE) {
// We found a solution! abort now.
SatAssignmentToBopSolution(sat_solver.Assignment(),
&learned_info->solution);
return BopOptimizerBase::SOLUTION_FOUND;
}
// Adapt the difficulty.
if (sat_solver.num_failures() < 0.5 * conflict_limit) {
adaptive_difficulty_.IncreaseParameter();
} else if (sat_solver.num_failures() > 0.95 * conflict_limit) {
adaptive_difficulty_.DecreaseParameter();
}
}
return BopOptimizerBase::CONTINUE;
}
//------------------------------------------------------------------------------
// Neighborhood generators.
//------------------------------------------------------------------------------
namespace {
std::vector<sat::Literal> ObjectiveVariablesAssignedToTheirLowCostValue(
const ProblemState& problem_state,
const BopConstraintTerms& objective_terms) {
std::vector<sat::Literal> result;
DCHECK(problem_state.solution().IsFeasible());
for (const BopConstraintTerm& term : objective_terms) {
if (((problem_state.solution().Value(term.var_id) && term.weight < 0) ||
(!problem_state.solution().Value(term.var_id) && term.weight > 0))) {
result.push_back(
sat::Literal(sat::BooleanVariable(term.var_id.value()),
problem_state.solution().Value(term.var_id)));
}
}
return result;
}
} // namespace
void ObjectiveBasedNeighborhood::GenerateNeighborhood(
const ProblemState& problem_state, double difficulty,
sat::SatSolver* sat_propagator) {
// Generate the set of variable we may fix and randomize their order.
std::vector<sat::Literal> candidates =
ObjectiveVariablesAssignedToTheirLowCostValue(problem_state,
objective_terms_);
std::shuffle(candidates.begin(), candidates.end(), random_);
// We will use the sat_propagator to fix some variables as long as the number
// of propagated variables in the solver is under our target.
const int num_variables = sat_propagator->NumVariables();
const int target = round((1.0 - difficulty) * num_variables);
sat_propagator->Backtrack(0);
for (const sat::Literal literal : candidates) {
if (sat_propagator->LiteralTrail().Index() == target) break;
if (sat_propagator->LiteralTrail().Index() > target) {
// We prefer to error on the large neighborhood side, so we backtrack the
// last enqueued literal.
sat_propagator->Backtrack(
std::max(0, sat_propagator->CurrentDecisionLevel() - 1));
break;
}
sat_propagator->EnqueueDecisionAndBacktrackOnConflict(literal);
if (sat_propagator->IsModelUnsat()) return;
}
}
void ConstraintBasedNeighborhood::GenerateNeighborhood(
const ProblemState& problem_state, double difficulty,
sat::SatSolver* sat_propagator) {
// Randomize the set of constraint
const LinearBooleanProblem& problem = problem_state.original_problem();
const int num_constraints = problem.constraints_size();
std::vector<int> ct_ids(num_constraints, 0);
for (int ct_id = 0; ct_id < num_constraints; ++ct_id) ct_ids[ct_id] = ct_id;
std::shuffle(ct_ids.begin(), ct_ids.end(), random_);
// Mark that we want to relax all the variables of these constraints as long
// as the number of relaxed variable is lower than our difficulty target.
const int num_variables = sat_propagator->NumVariables();
const int target = round(difficulty * num_variables);
int num_relaxed = 0;
std::vector<bool> variable_is_relaxed(problem.num_variables(), false);
for (int i = 0; i < ct_ids.size(); ++i) {
if (num_relaxed >= target) break;
const LinearBooleanConstraint& constraint = problem.constraints(ct_ids[i]);
// We exclude really large constraints since they are probably note helpful
// in picking a nice neighborhood.
if (constraint.literals_size() > 0.7 * num_variables) continue;
for (int j = 0; j < constraint.literals_size(); ++j) {
const VariableIndex var_id(constraint.literals(j) - 1);
if (!variable_is_relaxed[var_id.value()]) {
++num_relaxed;
variable_is_relaxed[var_id.value()] = true;
}
}
}
// Basic version: simply fix all the "to_fix" variable that are not relaxed.
//
// TODO(user): Not fixing anything that propagates a variable in
// variable_is_relaxed may be better. It is actually a lot better in the
// RelationGraphBasedNeighborhood. To investigate.
sat_propagator->Backtrack(0);
const std::vector<sat::Literal> to_fix =
ObjectiveVariablesAssignedToTheirLowCostValue(problem_state,
objective_terms_);
for (const sat::Literal literal : to_fix) {
if (variable_is_relaxed[literal.Variable().value()]) continue;
sat_propagator->EnqueueDecisionAndBacktrackOnConflict(literal);
if (sat_propagator->IsModelUnsat()) return;
}
}
RelationGraphBasedNeighborhood::RelationGraphBasedNeighborhood(
const LinearBooleanProblem& problem, absl::BitGenRef random)
: random_(random) {
const int num_variables = problem.num_variables();
columns_.resize(num_variables);
// We will ignore constraints that have more variables than this percentage of
// the total number of variables in this neighborhood computation.
//
// TODO(user): Factor this out with the similar factor in
// ConstraintBasedNeighborhood? also maybe a better approach is to order the
// constraint, and stop the neighborhood extension without considering all of
// them.
const double kSizeThreshold = 0.1;
for (int i = 0; i < problem.constraints_size(); ++i) {
const LinearBooleanConstraint& constraint = problem.constraints(i);
if (constraint.literals_size() > kSizeThreshold * num_variables) continue;
for (int j = 0; j < constraint.literals_size(); ++j) {
const sat::Literal literal(constraint.literals(j));
columns_[VariableIndex(literal.Variable().value())].push_back(
ConstraintIndex(i));
}
}
}
void RelationGraphBasedNeighborhood::GenerateNeighborhood(
const ProblemState& problem_state, double difficulty,
sat::SatSolver* sat_propagator) {
// Simply walk the graph until enough variable are relaxed.
const int num_variables = sat_propagator->NumVariables();
const int target = round(difficulty * num_variables);
int num_relaxed = 1;
std::vector<bool> variable_is_relaxed(num_variables, false);
std::deque<int> queue;
// TODO(user): If one plan to try of lot of different LNS, maybe it will be
// better to try to bias the distribution of "center" to be as spread as
// possible.
queue.push_back(absl::Uniform(random_, 0, num_variables));
variable_is_relaxed[queue.back()] = true;
while (!queue.empty() && num_relaxed < target) {
const int var = queue.front();
queue.pop_front();
for (ConstraintIndex ct_index : columns_[VariableIndex(var)]) {
const LinearBooleanConstraint& constraint =
problem_state.original_problem().constraints(ct_index.value());
for (int i = 0; i < constraint.literals_size(); ++i) {
const sat::Literal literal(constraint.literals(i));
const int next_var = literal.Variable().value();
if (!variable_is_relaxed[next_var]) {
++num_relaxed;
variable_is_relaxed[next_var] = true;
queue.push_back(next_var);
}
}
}
}
// Loops over all the variables in order and only fix the ones that don't
// propagate any relaxed variables.
DCHECK(problem_state.solution().IsFeasible());
sat_propagator->Backtrack(0);
for (sat::BooleanVariable var(0); var < num_variables; ++var) {
const sat::Literal literal(
var, problem_state.solution().Value(VariableIndex(var.value())));
if (variable_is_relaxed[literal.Variable().value()]) continue;
const int index =
sat_propagator->EnqueueDecisionAndBacktrackOnConflict(literal);
if (sat_propagator->CurrentDecisionLevel() > 0) {
for (int i = index; i < sat_propagator->LiteralTrail().Index(); ++i) {
if (variable_is_relaxed
[sat_propagator->LiteralTrail()[i].Variable().value()]) {
sat_propagator->Backtrack(sat_propagator->CurrentDecisionLevel() - 1);
}
}
}
if (sat_propagator->IsModelUnsat()) return;
}
VLOG(2) << "target:" << target << " relaxed:" << num_relaxed << " actual:"
<< num_variables - sat_propagator->LiteralTrail().Index();
}
} // namespace bop
} // namespace operations_research