-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_fields_of_study_dag.py
261 lines (232 loc) · 10.9 KB
/
new_fields_of_study_dag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
Updates the fields of study predictions. To only run on new records or records with title/abstract text that has
changed since the last run, trigger this dag with no parameters. To force the dag to rerun on everything,
trigger the dag with the configuration {"rerun": true}
"""
import json
import os
from airflow import DAG
from airflow.providers.google.cloud.operators.bigquery import BigQueryInsertJobOperator, BigQueryCheckOperator
from airflow.providers.google.cloud.transfers.bigquery_to_bigquery import BigQueryToBigQueryOperator
from airflow.providers.google.cloud.operators.compute import ComputeEngineStartInstanceOperator, \
ComputeEngineStopInstanceOperator
from airflow.providers.google.cloud.operators.gcs import GCSDeleteObjectsOperator
from airflow.providers.google.cloud.transfers.gcs_to_bigquery import GCSToBigQueryOperator
from airflow.operators.bash import BashOperator
from airflow.operators.dummy import DummyOperator
from airflow.operators.python import PythonOperator
from airflow.hooks.base_hook import BaseHook
from datetime import datetime
from dataloader.airflow_utils.defaults import DATA_BUCKET, PROJECT_ID, GCP_ZONE, DAGS_DIR, get_default_args, \
get_post_success
from dataloader.scripts.populate_documentation import update_table_descriptions
from dataloader.scripts.clean_backups import clean_backups
production_dataset = "fields_of_study_v2"
staging_dataset = f"staging_{production_dataset}"
pipeline_args = get_default_args(pocs=["James"])
pipeline_args["retries"] = 1
def mk_command_seq(cmds: list) -> str:
scripts = " && ".join(cmds)
return (f"gcloud compute ssh jm3312@{gce_resource_id} --zone {GCP_ZONE} "
f"--command \"{scripts}\"")
with DAG("new_fields_of_study",
default_args=pipeline_args,
description="Labels our scholarly literature with fields of study",
schedule_interval=None,
user_defined_macros = {"staging_dataset": staging_dataset, "production_dataset": production_dataset},
catchup=False
) as dag:
slack_webhook = BaseHook.get_connection("slack")
bucket = DATA_BUCKET
tmp_dir = f"{production_dataset}/tmp"
outputs_dir = f"{tmp_dir}/outputs"
schema_dir = f"{production_dataset}/schemas"
sql_dir = f"sql/{production_dataset}"
backups_dataset = f"{production_dataset}_backups"
gce_resource_id = "fos-runner"
bq_labels = {"dataset": "fields_of_study_v2"}
# We keep script inputs and outputs in a tmp dir on gcs, so clean it out at the start of each run. We clean at
# the start of the run so if the run fails we can examine the failed data
clear_tmp_dir = GCSDeleteObjectsOperator(
task_id="clear_tmp_gcs_dir",
bucket_name=bucket,
prefix=tmp_dir + "/"
)
# start the instance where we'll run the download and scoring scripts
gce_instance_start = ComputeEngineStartInstanceOperator(
project_id=PROJECT_ID,
zone=GCP_ZONE,
resource_id=gce_resource_id,
task_id="start-"+gce_resource_id
)
# clear out the directory of code and dvc artifacts on each run and grab whatever's
# latest on GCS (to be updated by the push_to_airflow script)
refresh_artifacts = BashOperator(
task_id=f"refresh_artifacts",
bash_command=mk_command_seq([
"cd /mnt/disks/data",
f"rm -rf fields-of-study-pipeline || true",
f"gsutil -m cp -r gs://{bucket}/{production_dataset}/fields-of-study-pipeline .",
"cd fields-of-study-pipeline",
"pip install -r requirements.txt",
"python3 -m dvc pull",
"cd assets/scientific-lit-embeddings/",
"python3 -m dvc pull"
])
)
clear_tmp_dir >> gce_instance_start >> refresh_artifacts
prev_op = refresh_artifacts
languages = ["en"]
for lang in languages:
# run the download script; filter inputs to only "changed" rows if the user did not pass the "rerun" param
# through the dagrun config
download = BashOperator(
task_id=f"download_{lang}",
bash_command = mk_command_seq([
"cd /mnt/disks/data",
# make sure the corpus dir is clean
f"rm -r fields-of-study-pipeline/assets/corpus/* || true",
"cd fields-of-study-pipeline",
(f"PYTHONPATH=. python3 scripts/download_corpus.py {lang} "
"{{'' if dag_run and dag_run.conf.get('rerun') else '--skip_prev'}} "
f"--use_default_clients --bq_dest {staging_dataset} --extract_bucket {bucket} "
f"--extract_prefix {tmp_dir}/inputs/{lang}_corpus-")
])
)
score_corpus = BashOperator(
task_id=f"score_corpus_{lang}",
bash_command=mk_command_seq([
"cd /mnt/disks/data/fields-of-study-pipeline",
f"PYTHONPATH=. python3 scripts/batch_score_corpus.py {lang} --limit 0",
f"gsutil cp assets/corpus/{lang}_scores.jsonl gs://{bucket}/{outputs_dir}/"
])
)
load_to_gcs = GCSToBigQueryOperator(
task_id=f"import_{lang}",
bucket=bucket,
source_objects=[f"{outputs_dir}/{lang}_scores.jsonl"],
destination_project_dataset_table=f"{staging_dataset}.new_{lang}",
source_format="NEWLINE_DELIMITED_JSON",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
autodetect=True,
labels=bq_labels,
)
prev_op >> download >> score_corpus >> load_to_gcs
prev_op = load_to_gcs
# stop the instance
gce_instance_stop = ComputeEngineStopInstanceOperator(
project_id=PROJECT_ID,
zone=GCP_ZONE,
resource_id=gce_resource_id,
task_id="stop-"+gce_resource_id
)
prev_op >> gce_instance_stop
prev_op = gce_instance_stop
# Run the downstream queries in the order they appear in query_sequence.txt
with open(f"{DAGS_DIR}/sequences/{production_dataset}/query_sequence.txt") as f:
for table_name in f:
table_name = table_name.strip()
if not table_name:
continue
query = BigQueryInsertJobOperator(
task_id=f"run_{table_name}",
configuration={
"query": {
"query": "{% include '" + f"{sql_dir}/{table_name}.sql" + "' %}",
"useLegacySql": False,
"destinationTable": {
"projectId": PROJECT_ID,
"datasetId": staging_dataset,
"tableId": table_name
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
"labels": bq_labels,
}
}
)
prev_op >> query
prev_op = query
wait_for_checks = DummyOperator(task_id="wait_for_checks")
for query in os.listdir(f"{DAGS_DIR}/{sql_dir}"):
if not query.startswith("check_"):
continue
check = BigQueryCheckOperator(
task_id=query.replace(".sql", ""),
sql=f"{sql_dir}/{query}",
params={
"dataset": staging_dataset
},
use_legacy_sql=False,
labels=bq_labels,
)
prev_op >> check >> wait_for_checks
wait_for_backup = DummyOperator(task_id="wait_for_backup")
curr_date = datetime.now().strftime('%Y%m%d')
# copy to production, populate table descriptions, backup tables
with open(f"{DAGS_DIR}/schemas/{production_dataset}/tables.json") as f:
table_desc = json.loads(f.read())
for table in ["field_scores", "field_meta", "field_hierarchy", "top_fields"]:
prod_table_name = f"{production_dataset}.{table}"
table_copy = BigQueryToBigQueryOperator(
task_id=f"copy_{table}_to_production",
source_project_dataset_tables=[f"{staging_dataset}.{table}"],
destination_project_dataset_table=prod_table_name,
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
labels=bq_labels,
)
pop_descriptions = PythonOperator(
task_id="populate_column_documentation_for_" + table,
op_kwargs={
"input_schema": f"{DAGS_DIR}/schemas/{production_dataset}/{table}.json",
"table_name": prod_table_name,
"table_description": table_desc[prod_table_name]
},
python_callable=update_table_descriptions
)
table_backup = BigQueryToBigQueryOperator(
task_id=f"back_up_{table}",
source_project_dataset_tables=[f"{staging_dataset}.{table}"],
destination_project_dataset_table=f"{backups_dataset}.{table}_{curr_date}",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
labels=bq_labels,
)
wait_for_checks >> table_copy >> pop_descriptions >> table_backup >> wait_for_backup
update_archive = PythonOperator(
task_id="update_archive",
op_kwargs={"dataset": backups_dataset, "backup_prefix": production_dataset},
python_callable=clean_backups,
)
success_alert = get_post_success("Fields of study v2 update succeeded!", dag)
update_archive >> success_alert
# as a final step before posting success, update the prev_{lang}_corpus tables so we'll know what text we used
# on previous runs
for lang in languages:
copy_corpus = BigQueryInsertJobOperator(
task_id=f"copy_{lang}_corpus",
configuration={
"query": {
"query": (f"select * from {staging_dataset}.{lang}_corpus "
f"union all "
f"(select * from {staging_dataset}.prev_{lang}_corpus "
f"where (merged_id not in (select merged_id from {staging_dataset}.{lang}_corpus)) "
"and "
f"(merged_id in (select merged_id from {production_dataset}.field_scores)))"),
"useLegacySql": False,
"destinationTable": {
"projectId": PROJECT_ID,
"datasetId": staging_dataset,
"tableId": f"prev_{lang}_corpus"
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
"labels": bq_labels,
}
}
)
wait_for_backup >> copy_corpus >> update_archive