forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
integer_programming.cc
96 lines (85 loc) · 3.58 KB
/
integer_programming.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Integer programming example that shows how to use the API.
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"
namespace operations_research {
void RunIntegerProgrammingExample(
MPSolver::OptimizationProblemType optimization_problem_type) {
MPSolver solver("IntegerProgrammingExample", optimization_problem_type);
const double infinity = solver.infinity();
// x and y are integer non-negative variables.
MPVariable* const x = solver.MakeIntVar(0.0, infinity, "x");
MPVariable* const y = solver.MakeIntVar(0.0, infinity, "y");
// Maximize x + 10 * y.
MPObjective* const objective = solver.MutableObjective();
objective->SetCoefficient(x, 1);
objective->SetCoefficient(y, 10);
objective->SetMaximization();
// x + 7 * y <= 17.5.
MPConstraint* const c0 = solver.MakeRowConstraint(-infinity, 17.5);
c0->SetCoefficient(x, 1);
c0->SetCoefficient(y, 7);
// x <= 3.5
MPConstraint* const c1 = solver.MakeRowConstraint(-infinity, 3.5);
c1->SetCoefficient(x, 1);
c1->SetCoefficient(y, 0);
LOG(INFO) << "Number of variables = " << solver.NumVariables();
LOG(INFO) << "Number of constraints = " << solver.NumConstraints();
solver.SetNumThreads(8);
solver.EnableOutput();
const MPSolver::ResultStatus result_status = solver.Solve();
// Check that the problem has an optimal solution.
if (result_status != MPSolver::OPTIMAL) {
LOG(FATAL) << "The problem does not have an optimal solution!";
}
LOG(INFO) << "Solution:";
LOG(INFO) << "x = " << x->solution_value();
LOG(INFO) << "y = " << y->solution_value();
LOG(INFO) << "Optimal objective value = " << objective->Value();
LOG(INFO) << "";
LOG(INFO) << "Advanced usage:";
LOG(INFO) << "Problem solved in " << solver.wall_time() << " milliseconds";
LOG(INFO) << "Problem solved in " << solver.iterations() << " iterations";
LOG(INFO) << "Problem solved in " << solver.nodes()
<< " branch-and-bound nodes";
}
void RunAllExamples() {
#if defined(USE_CBC)
LOG(INFO) << "---- Integer programming example with CBC ----";
RunIntegerProgrammingExample(MPSolver::CBC_MIXED_INTEGER_PROGRAMMING);
#endif
#if defined(USE_GLPK)
LOG(INFO) << "---- Integer programming example with GLPK ----";
RunIntegerProgrammingExample(MPSolver::GLPK_MIXED_INTEGER_PROGRAMMING);
#endif
#if defined(USE_SCIP)
LOG(INFO) << "---- Integer programming example with SCIP ----";
RunIntegerProgrammingExample(MPSolver::SCIP_MIXED_INTEGER_PROGRAMMING);
#endif
#if defined(USE_GUROBI)
LOG(INFO) << "---- Integer programming example with Gurobi ----";
RunIntegerProgrammingExample(MPSolver::GUROBI_MIXED_INTEGER_PROGRAMMING);
#endif // USE_GUROBI
#if defined(USE_CPLEX)
LOG(INFO) << "---- Integer programming example with CPLEX ----";
RunIntegerProgrammingExample(MPSolver::CPLEX_MIXED_INTEGER_PROGRAMMING);
#endif // USE_CPLEX
}
} // namespace operations_research
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
FLAGS_logtostderr = 1;
operations_research::RunAllExamples();
return EXIT_SUCCESS;
}