-
Notifications
You must be signed in to change notification settings - Fork 1
/
Iwo2017post.inp
108 lines (68 loc) · 5.44 KB
/
Iwo2017post.inp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
% =========================================================================
% Geodetic Bayesian Inversion Software (GBIS)
% Software for the Bayesian inversion of geodetic data.
% Copyright: Marco Bagnardi, 2018
%
% Email: [email protected]
%
% Reference:
% Bagnardi M. & Hooper A, (2018).
% Inversion of surface deformation data for rapid estimates of source
% parameters and uncertainties: A Bayesian approach. Geochemistry,
% Geophysics, Geosystems, 19. https://doi.org/10.1029/2018GC007585
%
% =========================================================================
% Last update: 8 August, 2018
% INPUT FILE
%% Reference point and Area of interest
geo.referencePoint = [130.853; 31.947]; % Longitude and Latitude in degrees for arbitrary reference point of local coordinates system [Lon; Lat;]
geo.boundingBox = [130.832; 31.96; 130.87; 31.935]; % Coordinates in degrees of upper left and lower right limits of area of interest [UL_Lon,UL_Lat,LR_Lon,LR_Lat] [W; N; E; S]
%% InSAR data
% Make sure insarID is unique!
insarID = 1; % InSAR dataset unique identifier - ALOS2 asc track
insar{insarID}.dataPath = '/Users/yunjunz/Papers/2021_Kirishima/figs_src/model/data/KirishimaAlos2AT131_20171219_20190702.mat'; % Path to data file
insar{insarID}.wavelength = 0.236; % Wavelength in m (e.g., Envisat/ERS/Sentinel: 0.056; CSK/TSX/TDX: 0.031)
insar{insarID}.constOffset = 'y'; % Remove constant offset? 'y' or 'n'
insar{insarID}.rampFlag = 'y'; % Remove ramp? 'y' or 'n'
insar{insarID}.sillExp = 9.5e-05; % Variogram sill in m^2
insar{insarID}.range = 1800; % Variogram range in m
insar{insarID}.nugget = 5.9e-06; % Variogram nugget in m
insar{insarID}.quadtreeThresh = 0.0045^2; % Quadtree threshold variance (e.g., 0.01^2 m or 1e-04 m)
insar{insarID}.quadtreeEndLevel = 9; % Quadtree end of subdivisions, default is 1000
insar{insarID}.quadtreeMinPixelNumber = 2 % Minimum number of pixels for each subdivision, below which will excluded. Set to 1 to keep everything.
insar{insarID}.quadtreeBox = [130.840; 31.954; 130.862; 31.940]; % WNES coordinates in degrees for area of interest
insar{insarID}.gridStep = 600; % grid step in m
%%
insarID = 2; % InSAR dataset unique identifier - ALOS2 desc track
insar{insarID}.dataPath = '/Users/yunjunz/Papers/2021_Kirishima/figs_src/model/data/KirishimaAlos2DT23_20171211_20190819.mat'; % Path to data file
insar{insarID}.wavelength = 0.236; % Wavelength in m (e.g., Envisat/ERS/Sentinel: 0.056; CSK/TSX/TDX: 0.031)
insar{insarID}.constOffset = 'y'; % Remove constant offset? 'y' or 'n'
insar{insarID}.rampFlag = 'y'; % Remove ramp? 'y' or 'n'
insar{insarID}.sillExp = 13e-05; % Variogram sill in m^2
insar{insarID}.range = 2100; % Variogram range in m
insar{insarID}.nugget = 6.6e-07; % Variogram nugget in m
insar{insarID}.quadtreeThresh = 0.0040^2; % Quadtree threshold variance (e.g., 0.01^2 m or 1e-04 m)
insar{insarID}.quadtreeEndLevel = 9; % Quadtree end of subdivisions, default is 1000
insar{insarID}.quadtreeMinPixelNumber = 2 % Minimum number of pixels for each subdivision, below which will excluded. Set to 1 to keep everything.
insar{insarID}.quadtreeBox = [130.840; 31.954; 130.862; 31.940]; % WNES coordinates in degrees for area of interest
insar{insarID}.gridStep = 600; % grid step in m
%% Model parameters
modelInput.nu = 0.25; % Poisson's ratio (Shear modulus is set to 1) clay-rich layer (Tsukamoto et al., 2018; Kobayashi et al., 2018)
% Topographic Effect correction using varying depth method (Williams & Wadge, 1998, GRL)
% Peak of Iwo-yama: 1313 m
modelInput.topo = 'y'; % 'y' or 'n'. Apply topographic correction using varying depth method.
modelInput.freeSurfaceHeight = 1300; % Minimum height of observations in m a.s.l.; observations below the threshold will be fixed to this height.
% Compound Dislocation Model (Nikhoo) 'C'
% Fix all parameters with values from the Iwo2017pre/invert_1_2_C by setting start/lower/upper to the same value
% except for the opening, which is bounded by the 95% confidence intervals assuming a constant opening rate.
% X Y Z omegaX omegaY omegaZ aX aY/aX aZ/aX opening
modelInput.cdmn.start = [ 15.4; -3.0; -1181; 4.7; -8; 0.4; 57.9; 1.2; 1.1; 0.19;]; % starting model
modelInput.cdmn.step = [ 0.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.02;]; % initial maximium step size
modelInput.cdmn.lower = [ 15.4; -3.0; -1181; 4.7; -8; 0.4; 57.9; 1.2; 1.1; 0.16;]; % lower bounds on m
modelInput.cdmn.upper = [ 15.4; -3.0; -1181; 4.7; -8; 0.4; 57.9; 1.2; 1.1; 0.23;]; % upper bounds on m
% 2nd Compound Dislocation Model (Nikhoo) 'C2'
% X Y Z omegaX omegaY omegaZ aX aY/aX aZ/aX opening
modelInput.cdm2.start = [ 0; 0; -950; 0; 0; 0; 400; 0.5; 0.5; 0.3;]; % starting model
modelInput.cdm2.step = [ 10; 10; 10; 0.1; 0.1; 0.1; 10; 0.1; 0.1; 0.1;]; % initial maximium step size
modelInput.cdm2.lower = [ -200; -250; -1050; 0; 0; 0; 250; 0.1; 0.1; 1e-2;]; % lower bounds on m
modelInput.cdm2.upper = [ 200; 200; -850; 0; 0; 0; 600; 2.0; 2.0; 5e-1;]; % upper bounds on m