-
-
Notifications
You must be signed in to change notification settings - Fork 594
/
Copy path_10-ex.Rmd
227 lines (187 loc) · 7.31 KB
/
_10-ex.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
```{r 10-ex-e0, message=FALSE}
library(sf)
library(terra)
```
<!-- qgisprocess 1-3 -->
E1. Compute global solar irradiation for an area of `system.file("raster/dem.tif", package = "spDataLarge")` for March 21 at 11:00 am using the `r.sun` GRASS GIS through **qgisprocess**.
```{r}
library(qgisprocess)
# enable grass
qgis_enable_plugins("grassprovider")
dem = rast(system.file("raster/dem.tif", package = "spDataLarge"))
slope = terrain(dem, "slope", unit = "degrees")
aspect = terrain(dem, "aspect", unit = "degrees")
qgis_algo = qgis_algorithms()
grep("r.sun", qgis_algo$algorithm, value = TRUE)
alg = "grass7:r.sun.incidout"
qgis_show_help(alg)
dem_sun = qgis_run_algorithm(alg,
elevation = dem, aspect = aspect, slope = slope,
day = 80, time = 11)
dem_sun
# output global (total) irradiance/irradiation [W.m-2] for given time
gsi_dem = qgis_as_terra(dem_sun$glob_rad)
plot(dem)
plot(gsi_dem)
```
<!-- sagagis 1 -->
E2. Compute catchment area\index{catchment area} and catchment slope of `system.file("raster/dem.tif", package = "spDataLarge")` using **Rsagacmd**.
```{r}
library(Rsagacmd)
dem = rast(system.file("raster/dem.tif", package = "spDataLarge"))
saga = saga_gis(raster_backend = "terra", vector_backend = "sf")
swi = saga$ta_hydrology$saga_wetness_index
tidy(swi)
swi_results = swi(dem, area_type = 0, slope_type = 1)
swi_results_all = rast(swi_results)
plot(swi_results_all[["area"]])
plot(swi_results_all[["slope"]])
```
E3. Continue working on the `ndvi_segments` object created in the SAGA section.
Extract average NDVI values from the `ndvi` raster and group them into six clusters using `kmeans()`.
Visualize the results.
```{r}
library(Rsagacmd)
saga = saga_gis(raster_backend = "terra", vector_backend = "sf")
ndvi = rast(system.file("raster/ndvi.tif", package = "spDataLarge"))
sg = saga$imagery_segmentation$seed_generation
ndvi_seeds = sg(ndvi, band_width = 2)
plot(ndvi_seeds$seed_grid)
srg = saga$imagery_segmentation$seeded_region_growing
ndvi_srg = srg(ndvi_seeds$seed_grid, ndvi, method = 1)
plot(ndvi_srg$segments)
ndvi_segments = as.polygons(ndvi_srg$segments) |>
st_as_sf()
# extract values
ndvi_segments_vals = extract(ndvi, ndvi_segments, fun = "mean")
ndvi_segments = cbind(ndvi_segments, ndvi_segments_vals)
# k-means
ks = kmeans(ndvi_segments[["ndvi"]], centers = 6)
ndvi_segments$k = ks$cluster
# merge polygons
library(dplyr)
ndvi_segments2 = ndvi_segments |>
group_by(k) |>
summarise()
# visualize results
library(tmap)
tm1 = tm_shape(ndvi) +
tm_raster(style = "cont", palette = "PRGn", title = "NDVI", n = 7) +
tm_shape(ndvi_segments2) +
tm_borders(col = "red") +
tm_layout(legend.outside = TRUE)
tm2 = tm_shape(ndvi_segments2) +
tm_polygons(col = "k", style = "cat", palette = "Set1") +
tm_layout(legend.outside = TRUE)
tmap_arrange(tm1, tm2)
```
<!-- rgrass 1 -->
E4. Attach `data(random_points, package = "spDataLarge")` and read `system.file("raster/dem.tif", package = "spDataLarge")` into R.
Select a point randomly from `random_points` and find all `dem` pixels that can be seen from this point (hint: viewshed\index{viewshed} can be calculated using GRASS GIS).
Visualize your result.
For example, plot a hillshade\index{hillshade}, the digital elevation model\index{digital elevation model}, your viewshed\index{viewshed} output, and the point.
Additionally, give `mapview` a try.
```{r}
library(rgrass)
dem = rast(system.file("raster/dem.tif", package = "spDataLarge"))
data(random_points, package = "spDataLarge")
random_point = random_points[sample(1:nrow(random_points), 1), ]
link2GI::linkGRASS(dem)
write_RAST(dem, vname = "dem")
execGRASS("r.viewshed",
input = "dem",
coordinates = sf::st_coordinates(random_point),
output = "view",
flags = "overwrite")
out = read_RAST("view")
# simple viz
plot(out)
# hillshade viz
hs = shade(slope = terrain(dem, "slope", unit = "radians"),
aspect = terrain(dem, "aspect", unit = "radians"))
library(tmap)
tm_shape(hs) +
tm_raster(palette = gray(0:100 / 100), n = 100, legend.show = FALSE) +
tm_shape(dem) +
tm_raster(alpha = 0.6, palette = hcl.colors(25, "Geyser"), legend.show = FALSE) +
tm_shape(out) +
tm_raster(style = "cont", legend.show = FALSE) +
tm_shape(random_point) +
tm_symbols(col = "black") +
tm_layout(frame = FALSE)
# mapview viz
library(mapview)
mapview(out, col = "white", map.type = "Esri.WorldImagery") +
mapview(point)
```
<!-- gdal 1-2 -->
E5. Use `gdalinfo` via a system call for a raster\index{raster} file stored on a disk of your choice.
What kind of information can you find there?
```{r}
link2GI::linkGDAL()
our_filepath = system.file("raster/elev.tif", package = "spData")
cmd = paste("gdalinfo", our_filepath)
system(cmd)
# Driver, file path, dimensions, CRS, resolution, bounding box, summary statistics
```
E6. Use `gdalwarp` to decrease the resolution of your raster file (for example, if the resolution is 0.5, change it into 1). Note: `-tr` and `-r` flags will be used in this exercise.
```{r}
our_filepath = system.file("raster/elev.tif", package = "spData")
cmd2 = paste("gdalwarp", our_filepath, "new_elev.tif", "-tr 1 1", "-r bilinear")
system(cmd2)
```
<!-- postgis 1? -->
E7. Query all Californian highways from the PostgreSQL/PostGIS\index{PostGIS} database living in the QGIS\index{QGIS} Cloud introduced in this chapter.
```{r}
library(RPostgreSQL)
conn = dbConnect(drv = PostgreSQL(),
dbname = "rtafdf_zljbqm", host = "db.qgiscloud.com",
port = "5432", user = "rtafdf_zljbqm", password = "d3290ead")
query = paste(
"SELECT *",
"FROM highways",
"WHERE state = 'CA';")
ca_highways = read_sf(conn, query = query, geom = "wkb_geometry")
plot(st_geometry(ca_highways))
```
<!-- stac+gdalcubes 1 -->
E8. The `ndvi.tif` raster (`system.file("raster/ndvi.tif", package = "spDataLarge")`) contains NDVI calculated for the Mongón study area based on Landsat data from September 22, 2000.
Use **rstac**, **gdalcubes**, and **terra** to download Sentinel-2 images for the same area from
2020-08-01 to 2020-10-31, calculate its NDVI, and then compare it with the results from `ndvi.tif`.
```{r}
library(rstac)
library(gdalcubes)
?spDataLarge::ndvi.tif
ndvi1 = rast(system.file("raster/ndvi.tif", package = "spDataLarge"))
bbox1 = as.numeric(st_bbox(project(ndvi1, "EPSG:4326")))
# get data
s = stac("https://earth-search.aws.element84.com/v0")
items = s |>
stac_search(collections = "sentinel-s2-l2a-cogs",
bbox = bbox1,
datetime = "2020-08-01/2020-10-31") |>
post_request() |> items_fetch()
collection = stac_image_collection(items$features,
property_filter = function(x) {x[["eo:cloud_cover"]] < 10})
v = cube_view(srs = "EPSG:32717", extent = collection,
dx = xres(ndvi1), dy = yres(ndvi1),
dt = "P1D")
# calculate ndvi
ndvi2 = raster_cube(collection, v) |>
select_bands(c("B04", "B08")) |>
apply_pixel("(B08-B04)/(B08+B04)", "NDVI")
# write results to file
gdalcubes_options(parallel = 2)
gdalcubes::write_tif(ndvi2, dir = ".", prefix = "ndvi2")
# unify two datasets
ndvi2 = rast("ndvi22020-10-10.tif")
plot(ndvi2)
ndvi2 = resample(ndvi2, ndvi1, method = "bilinear")
plot(ndvi2)
# vizualize the final results
ndvi_all = c(ndvi1, ndvi2)
names(ndvi_all) = c("y2000", "y2020")
library(tmap)
tm_shape(ndvi_all) +
tm_raster(style = "cont")
```