-
-
Notifications
You must be signed in to change notification settings - Fork 592
/
Copy path_09-ex.Rmd
316 lines (266 loc) · 11 KB
/
_09-ex.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
```{r 09-ex-e0, message=FALSE}
library(sf)
library(terra)
library(dplyr)
library(spData)
```
These exercises rely on a new object, `africa`.
Create it using the `world` and `worldbank_df` datasets from the **spData** package as follows:
```{r 08-mapping-41, warning=FALSE, include=TRUE}
library(spData)
africa = world |>
filter(continent == "Africa", !is.na(iso_a2)) |>
left_join(worldbank_df, by = "iso_a2") |>
select(name, subregion, gdpPercap, HDI, pop_growth) |>
st_transform("ESRI:102022") |>
st_make_valid() |>
st_collection_extract("POLYGON")
```
We will also use `zion` and `nlcd` datasets from **spDataLarge**:
```{r 08-mapping-42, results='hide', include=TRUE}
zion = read_sf((system.file("vector/zion.gpkg", package = "spDataLarge")))
nlcd = rast(system.file("raster/nlcd.tif", package = "spDataLarge"))
```
E1. Create a map showing the geographic distribution of the Human Development Index (`HDI`) across Africa with base **graphics** (hint: use `plot()`) and **tmap** packages (hint: use `tm_shape(africa) + ...`).
- Name two advantages of each based on the experience.
- Name three other mapping packages and an advantage of each.
- Bonus: create three more maps of Africa using these three other packages.
```{r}
# graphics
plot(africa["HDI"])
# # tmap
# remotes::install_github("r-tmap/tmap")
library(tmap)
tm_shape(africa) +
tm_polygons("HDI")
# ggplot
library(ggplot2)
ggplot() +
geom_sf(data = africa, aes(fill = HDI))
# ggplotly
library(plotly)
g = ggplot() +
geom_sf(data = africa, aes(fill = HDI))
ggplotly(g)
# mapsf
library(mapsf)
mf_map(x = africa, var = "HDI", type = "choro")
```
E2. Extend the **tmap** created for the previous exercise so the legend has three bins: "High" (`HDI` above 0.7), "Medium" (`HDI` between 0.55 and 0.7) and "Low" (`HDI` below 0.55).
Bonus: improve the map aesthetics, for example by changing the legend title, class labels and color palette.
```{r}
library(tmap)
tm_shape(africa) +
tm_polygons("HDI",
fill.scale = tm_scale_intervals(breaks = c(0, 0.55, 0.7, 1),
labels = c("Low", "Medium", "High"),
values = "-viridis"),
fill.legend = tm_legend(title = "Human Development Index"))
```
E3. Represent `africa`'s subregions on the map.
Change the default color palette and legend title.
Next, combine this map and the map created in the previous exercise into a single plot.
```{r}
asubregions = tm_shape(africa) +
tm_polygons("subregion",
fill.scale = tm_scale_categorical(values = "Set3"),
fill.legend = tm_legend(title = "Subregion:"))
ahdi = tm_shape(africa) +
tm_polygons("HDI",
fill.scale = tm_scale_intervals(breaks = c(0, 0.55, 0.7, 1),
labels = c("Low", "Medium", "High"),
values = "-viridis"),
fill.legend = tm_legend(title = "Human Development Index:"))
tmap_arrange(ahdi, asubregions)
```
E4. Create a land cover map of Zion National Park.
- Change the default colors to match your perception of the land cover categories
- Add a scale bar and north arrow and change the position of both to improve the map's aesthetic appeal
- Bonus: Add an inset map of Zion National Park's location in the context of the state of Utah. (Hint: an object representing Utah can be subset from the `us_states` dataset.)
```{r}
tm_shape(nlcd) +
tm_raster(col.scale = tm_scale_categorical(values = c("#495EA1", "#AF5F63", "#EDE9E4",
"#487F3F", "#EECFA8", "#A4D378",
"#FFDB5C", "#72D593"), levels.drop = TRUE)) +
tm_scalebar(bg.color = "white", position = c("left", "bottom")) +
tm_compass(bg.color = "white", position = c("right", "top")) +
tm_layout(legend.position = c("left", "top"), legend.bg.color = "white")
```
```{r}
# Bonus
utah = subset(us_states, NAME == "Utah")
utah = st_transform(utah, st_crs(zion))
zion_region = st_bbox(zion) |>
st_as_sfc()
main = tm_shape(nlcd) +
tm_raster(col.scale = tm_scale_categorical(values = c("#495EA1", "#AF5F63", "#EDE9E4",
"#487F3F", "#EECFA8", "#A4D378",
"#FFDB5C", "#72D593"), levels.drop = TRUE)) +
tm_scalebar(bg.color = "white", position = c("left", "bottom")) +
tm_compass(bg.color = "white", position = c("right", "top")) +
tm_layout(legend.position = c("left", "top"), legend.bg.color = "white")
inset = tm_shape(utah) +
tm_polygons() +
tm_text("UTAH", size = 3) +
#tm_shape(zion) +
#tm_polygons(col = "red") +
tm_shape(zion_region) +
tm_borders(col = "red") +
tm_layout(frame = FALSE)
library(grid)
norm_dim = function(obj){
bbox = st_bbox(obj)
width = bbox[["xmax"]] - bbox[["xmin"]]
height = bbox[["ymax"]] - bbox[["ymin"]]
w = width / max(width, height)
h = height / max(width, height)
return(unit(c(w, h), "snpc"))
}
main_dim = norm_dim(zion)
ins_dim = norm_dim(utah)
main_vp = viewport(width = main_dim[1], height = main_dim[2])
ins_vp = viewport(width = ins_dim[1] * 0.4, height = ins_dim[2] * 0.4,
x = unit(1, "npc") - unit(0.5, "cm"), y = unit(0.5, "cm"),
just = c("right", "bottom"))
grid.newpage()
print(main, vp = main_vp)
pushViewport(main_vp)
print(inset, vp = ins_vp)
```
E5. Create facet maps of countries in Eastern Africa:
- With one facet showing HDI and the other representing population growth (hint: using variables `HDI` and `pop_growth`, respectively)
- With a 'small multiple' per country
```{r}
ea = subset(africa, subregion == "Eastern Africa")
#1
tm_shape(ea) +
tm_polygons(c("HDI", "pop_growth"))
#2
tm_shape(ea) +
tm_polygons() +
tm_facets_wrap("name")
```
E6. Building on the previous facet map examples, create animated maps of East Africa:
- Showing each country in order
- Showing each country in order with a legend showing the HDI
```{r, eval=FALSE}
tma1 = tm_shape(ea) +
tm_polygons() +
tm_facets(by = "name", nrow = 1, ncol = 1)
tmap_animation(tma1, filename = "tma2.gif", width = 1000, height = 1000)
browseURL("tma1.gif")
tma2 = tm_shape(africa) +
tm_polygons(fill = "lightgray") +
tm_shape(ea) +
tm_polygons(fill = "darkgray") +
tm_shape(ea) +
tm_polygons(fill = "HDI") +
tm_facets(by = "name", nrow = 1, ncol = 1)
tmap_animation(tma2, filename = "tma2.gif", width = 1000, height = 1000)
browseURL("tma2.gif")
```
E7. Create an interactive map of HDI in Africa:
- With **tmap**
- With **mapview**
- With **leaflet**
- Bonus: For each approach, add a legend (if not automatically provided) and a scale bar
```{r, eval=FALSE}
# tmap
tmap_mode("view")
tm_shape(africa) + tm_polygons("HDI") + tm_scalebar()
# mapview
mapview::mapview(africa["HDI"])
# leaflet
africa4326 = st_transform(africa, "EPSG:4326")
library(leaflet)
pal = colorNumeric(palette = "YlGnBu", domain = africa4326$HDI)
leaflet(africa4326) |>
addTiles() |>
addPolygons(stroke = FALSE, smoothFactor = 0.2, fillOpacity = 1, color = ~pal(HDI)) |>
addLegend("bottomright", pal = pal, values = ~HDI, opacity = 1) |>
addScaleBar()
```
E8. Sketch on paper ideas for a web mapping application that could be used to make transport or land-use policies more evidence-based:
- In the city you live, for a couple of users per day
- In the country you live, for dozens of users per day
- Worldwide for hundreds of users per day and large data serving requirements
```{asis}
Ideas could include identification of routes where many people currently drive short distances, ways to encourage access to parks, or prioritization of new developments to reduce long-distance travel.
At the city level a web map would be sufficient.
A the national level a mapping application, e.g., with shiny, would probably be needed.
Worldwide, a database to serve the data would likely be needed. Then various front-ends could plug in to this.
```
E9. Update the code in `coffeeApp/app.R` so that instead of centering on Brazil the user can select which country to focus on:
- Using `textInput()`
- Using `selectInput()`
```{asis}
The answer can be found in the `shinymod` branch of the geocompr repo: https://github.com/Robinlovelace/geocompr/pull/318/files
You create the new widget and then use it to set the center.
Note: the input data must be fed into the map earlier to prevent the polygons disappearing when you change the center this way.
```
E10. Reproduce Figure 9.1 and Figure 9.7 as closely as possible using the **ggplot2** package.
```{r}
library(ggplot2)
ggplot() +
geom_sf(data = nz, color = NA) +
coord_sf(crs = st_crs(nz), datum = NA) +
theme_void()
ggplot() +
geom_sf(data = nz, fill = NA) +
coord_sf(crs = st_crs(nz), datum = NA) +
theme_void()
ggplot() +
geom_sf(data = nz) +
coord_sf(crs = st_crs(nz), datum = NA) +
theme_void()
# fig 9.7
ggplot() +
geom_sf(data = nz, aes(fill = Median_income)) +
coord_sf(crs = st_crs(nz), datum = NA) +
scale_fill_distiller(palette = "Blues", direction = 1) +
theme_void()
ggplot() +
geom_sf(data = nz, aes(fill = Island)) +
coord_sf(crs = st_crs(nz), datum = NA) +
scale_fill_manual(values = c("#CC6677", "#332288")) +
theme_void()
```
E11. Join `us_states` and `us_states_df` together and calculate a poverty rate for each state using the new dataset.
Next, construct a continuous area cartogram based on total population.
Finally, create and compare two maps of the poverty rate: (1) a standard choropleth map and (2) a map using the created cartogram boundaries.
What is the information provided by the first and the second map?
How do they differ from each other?
```{r}
tmap_mode("plot")
library(cartogram)
# prepare the data
us = st_transform(us_states, "EPSG:9311")
us = left_join(us, us_states_df, by = c("NAME" = "state"))
# calculate a poverty rate
us$poverty_rate = us$poverty_level_15 / us$total_pop_15
# create a regular map
ecm1 = tm_shape(us) +
tm_polygons("poverty_rate", fill.legend = tm_legend(title = "Poverty rate"))
# create a cartogram
us_carto = cartogram_cont(us, "total_pop_15")
ecm2 = tm_shape(us_carto) +
tm_polygons("poverty_rate", fill.legend = tm_legend(title = "Poverty rate"))
# combine two maps
tmap_arrange(ecm1, ecm2)
```
E12. Visualize population growth in Africa.
Next, compare it with the maps of a hexagonal and regular grid created using the **geogrid** package.
```{r}
library(geogrid)
hex_cells = calculate_grid(africa, grid_type = "hexagonal", seed = 25, learning_rate = 0.03)
africa_hex = assign_polygons(africa, hex_cells)
reg_cells = calculate_grid(africa, grid_type = "regular", seed = 25, learning_rate = 0.03)
africa_reg = assign_polygons(africa, reg_cells)
tgg1 = tm_shape(africa) +
tm_polygons("pop_growth", fill.legend = tm_legend(title = "Population's growth (annual %)"))
tgg2 = tm_shape(africa_hex) +
tm_polygons("pop_growth", fill.legend = tm_legend(title = "Population's growth (annual %)"))
tgg3 = tm_shape(africa_reg) +
tm_polygons("pop_growth", fill.legend = tm_legend(title = "Population's growth (annual %)"))
tmap_arrange(tgg1, tgg2, tgg3)
```