-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathIV_Surface_wireframe.py
86 lines (65 loc) · 3.18 KB
/
IV_Surface_wireframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import requests, numpy as np, pandas as pd, matplotlib.pyplot as plt
from scipy import interpolate
#saquen su API key en https://developer.tdameritrade.com/content/getting-started
c_key = 'ZUHAWUVPFB5RSDODLQS08EN8EOQN5TKO'
def options(symbol):
params = {'apikey' : c_key, 'symbol':symbol}
endpoint = 'https://api.tdameritrade.com/v1/marketdata/chains'
r = requests.get(url=endpoint ,params=params)
return r.json()
def optionsDF(chain, k_min=0, k_max=1000, ttm_min=10, ttm_max=700):
v_calls = list(chain['callExpDateMap'].values())
v_puts = list(chain['putExpDateMap'].values())
calls, puts = [], []
for i in range(len(v_calls)):
v = list(v_calls[i].values())
for j in range(len(v)):
calls.append(v[j][0])
for i in range(len(v_puts)):
v = list(v_puts[i].values())
for j in range(len(v)):
puts.append(v[j][0])
contracts = pd.concat([pd.DataFrame(calls),pd.DataFrame(puts)])
tabla = contracts.loc[contracts.daysToExpiration>0].copy()
tabla['ticker'] = chain['symbol']
df_ok = tabla.loc[(tabla['strikePrice'] > k_min) & (tabla['strikePrice'] < k_max)]
df_ok = df_ok.loc[(df_ok['daysToExpiration'] > ttm_min) & (df_ok['daysToExpiration'] < ttm_max)]
return df_ok
def prepararMalla(columna, df, leg=None):
if leg:
df = df.loc[df['putCall']==leg].copy()
df_ok = df.loc[:,['strikePrice','daysToExpiration',columna]]
df_ok = df_ok.replace('NaN',np.nan).dropna()
x_q = len(df_ok['strikePrice'].unique())
y_q = len(df_ok['daysToExpiration'].unique())
x1 = np.linspace(df_ok['strikePrice'].min(), df_ok['strikePrice'].max(), x_q)
y1 = np.linspace(df_ok['daysToExpiration'].min(), df_ok['daysToExpiration'].max(), y_q)
X, Y = np.meshgrid(x1, y1)
Z = interpolate.griddata((df_ok['strikePrice'], df_ok['daysToExpiration']), df_ok[columna], (X, Y))
return X,Y,Z, df_ok
def grafCols(cols, leg=None):
fig = plt.figure(figsize=(16,5))
ax = [fig.add_subplot(1, len(cols), i+1, projection='3d') for i in range(len(cols))]
for i in range(len(cols)):
col = cols[i]
df_greeks = data.copy()
X,Y,Z,df = prepararMalla(col, df_greeks, leg=leg)
ax[i].plot_wireframe(X, Y, Z, color='white', lw=2)
ax[i].set_title(f'{col} ({leg})', fontsize=16, color='silver')
ax[i].set_xlabel('Strikes', fontsize=16, color='w')
ax[i].set_ylabel('TTM', fontsize=16, color='w')
ax[i].set_zlabel(col, fontsize=16, color='w')
ax[i].w_xaxis.set_pane_color((0,0,0,0))
ax[i].w_yaxis.set_pane_color((0,0,0,0))
ax[i].w_zaxis.set_pane_color((0,0,0,0))
ax[i].set_zlabel(col)
plt.style.use('dark_background')
ticker = 'AAPL'
data = optionsDF(options(ticker), k_min=350, k_max=700, ttm_min=10, ttm_max=365)
grafCols(['delta','gamma'], 'CALL')
grafCols(['vega','theta'], 'CALL')
grafCols(['rho','volatility'], 'CALL')
grafCols(['percentChange','openInterest'], 'CALL')
grafCols(['timeValue','theoreticalOptionValue'], 'CALL')
grafCols(['timeValue','theoreticalOptionValue'], 'PUT')
plt.show()