-
Notifications
You must be signed in to change notification settings - Fork 0
/
BGPO_test.py
382 lines (301 loc) · 9.64 KB
/
BGPO_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import torch
import garage
# from garage.experiment import run_experiment
from garage.experiment import LocalRunner
# from garage.tf.envs import TfEnv
from Policy import GaussianMLPPolicy, CategoricalMLPPolicy
from Algorithms.BGPO import BGPO
from gym.envs.mujoco import Walker2dEnv, HopperEnv,HalfCheetahEnv
# from gym.envs.classic_control import CartPoleEnv
from garage import wrap_experiment
from garage.envs import GarageEnv, normalize
from Algorithms._utils import CosLR
from garage.torch.value_functions import GaussianMLPValueFunction
from garage.envs.normalized_env import NormalizedEnv
import os.path
from os import path
import argparse
parser = argparse.ArgumentParser(description='BGPO')
parser.add_argument('--env', default='CartPole', type=str, help='choose environment from [CartPole, Walker, Hopper, HalfCheetah]')
parser.add_argument('--type', default='Diag', type=str)
parser.add_argument('--pow', default=2.0, type=float)
args = parser.parse_args()
@wrap_experiment
def run_task(ctxt=None, *_):
"""Set up environment and algorithm and run the task.
Args:
snapshot_config (garage.experiment.SnapshotConfig): The snapshot
configuration used by LocalRunner to create the snapshotter.
If None, it will create one with default settings.
_ : Unused parameters
"""
#count = 1
th = 1.8
g_max = 0.05
lam = 0.1
grad_factor = 0.001
n_epochs = 100
runner = LocalRunner(ctxt)
n_counts = 5
vf_minibatch = 160
minibatch_size = 64
print(args.env)
vf_lr = 2.5e-4
entropy_method = 'max'
stop_entropy_gradient = True
sch = None
m_lower = 0.3
if args.env == 'CartPole':
#CartPole
# env = TfEnv(normalize(CartPoleEnv()))
# 'CartPole-v1'
gymenv = GarageEnv(env_name='CartPole-v1')
env = gymenv
batch_size = 5000
max_length = 100
minibatch_size = 128
vf_minibatch = 128
name = 'CartPole'
if args.type == 'Diag':
lr = 0.5
c = 50
w = 1
g_max = 1.0
lam = 7.5e-4
grad_factor = 0.0004
else:
lr = 0.5
c = 50
w = 1
g_max = 0.05
grad_factor = 0.0004
# lam = 0.001
lam = 0.8e-3
if args.pow != 3.0:
lam = lam*(3.0/args.pow)*2.0
if args.pow == 1.5:
lam = 0.016
#g_max = 0.03
discount = 0.995
model_path = './init/CartPole_policy.pth'
elif args.env == 'Pendulum':
env = GarageEnv(env_name='InvertedPendulum-v2')
batch_size = 50000
max_length = 500
minibatch_size = 512
vf_minibatch = 512
name = 'Pendulm'
th = 1.2
lr = 0.25
c = 300
w = 1
grad_factor = 0.00025
if args.type=='Diag':
g_max = 1.0
lam = 5e-4
else:
g_max = 0.10
lam = 0.001
discount = 0.99
model_path = './init/Single_Pendulum_policy.pth'
elif args.env == 'Acrobot':
env = GarageEnv(env_name='Acrobot-v1')
batch_size = 50000
max_length = 500
minibatch_size = 512
vf_minibatch = 512
name = 'Acrobot'
lr = 0.0175
c = 12000
w = 1
grad_factor = 0.00002
if args.type == 'Diag':
g_max = 1.0
# lam = 0.001
lam = 0.0005
else:
g_max = 0.10
lam = 0.001*(3.0/args.pow)**2
discount = 0.99
model_path = './init/Acrobot_policy.pth'
elif args.env == 'MountainCar':
env = GarageEnv(env_name='MountainCarContinuous-v0')
batch_size = 50000
max_length = 500
minibatch_size = 512
vf_minibatch = 512
name = 'MountainCar'
lr = 0.0175
c = 6000
w = 1
discount = 0.99
grad_factor = 0.00002
if args.type == 'Diag':
lr = 0.016
g_max = 1.0
c = 12000
lam = 4e-4
grad_factor = 0.00002
else:
g_max = 0.10
lam = 0.001 * (3.0/args.pow)*4
n_epochs = 150
model_path = './init/MountainCar_policy.pth'
elif args.env == 'Swim':
# Reacher - v2
env = GarageEnv(env_name='Swimmer-v2')
env = NormalizedEnv(env, normalize_obs=True, normalize_reward=False,)
batch_size = 50000
max_length = 500
n_epochs = 200
# n_timestep = 5e5
# n_counts = 5
minibatch_size = 4096
vf_minibatch = 512
# grad_factor = 100
vf_lr=2e-4
# batchsize:50
mf = 0.4 / 0.5
lr = 0.5*mf
c = 40*((1/mf)**2)*0.75
w = 1
m_lower = 0.6
lam = 6e-3
sch = CosLR(lam, T_max=n_epochs)
g_max = 0.1
discount = 0.99
entropy_method = 'no_entropy'
stop_entropy_gradient = False
model_path = './init/Swim_Policy.pth'
name = 'Swim'
elif args.env == 'Walker':
env = GarageEnv(env_name='Walker2d-v2')
batch_size = 50000
max_length = 500
minibatch_size = 2048
vf_minibatch = 512
n_epochs = 200
th = 1.2
lr = 0.5
c = 50
w = 1
lam = 0.0025
g_max = 1.0
discount = 0.99
loss_clip = True
# entropy_method = 'regularized'
entropy_method = 'no_entropy'
stop_entropy_gradient = False
model_path = './init/Walker_Policy.pth'
name = args.env
elif args.env == 'Reacher':
# Reacher - v2
env = GarageEnv(env_name='Reacher-v2')
# env = NormalizedEnv(env, normalize_obs=True, normalize_reward=False, )
batch_size = 50000
max_length = 500
n_epochs = 200
minibatch_size = 512
vf_minibatch = 512
lr = 0.5
c = 50
w = 1
lam = 5e-4
g_max = 1.0
discount = 0.99
entropy_method = 'no_entropy'
stop_entropy_gradient = False
model_path = './init/Reacher_Policy.pth'
name = 'Reacher'
elif args.env == 'DPendulum':
gymenv = GarageEnv(env_name='InvertedDoublePendulum-v2')
env = gymenv
batch_size = 50000
max_length = 500
# n_timestep = 5e5
# n_counts = 5
minibatch_size = 1024
vf_minibatch = 256
name = 'DPendulm'
# grad_factor = 100
th = 1.2
grad_factor = 7.5e-4
# batchsize:50
lr = 0.25
c = 40*1.5*4
w = 1
lam = 0.01
g_max = 0.3
entropy_method = 'max'
stop_entropy_gradient = True
discount = 0.99
loss_clip=True
model_path = './init/Pendulum_policy.pth'
elif args.env == 'HalfCheetah':
env = GarageEnv(env_name='HalfCheetah-v2')
batch_size = 50000
max_length = 500
minibatch_size = 512
n_epochs = 200
lr = 0.5
c = 50*2
w = 1
# lam = 0.0025
lam = 5e-4
g_max = 1.0
discount = 0.99
loss_clip = True
model_path = './init/HalfCheetah_Policy.pth'
name = 'HalfCheetah'
log_dir = './log/BGPO-%s_%s_%d_%d_%.2f.txt' % (args.type, name, batch_size, max_length,args.pow)
for i in range(n_counts):
if args.env == 'CartPole':
policy = CategoricalMLPPolicy(env.spec,
hidden_sizes=[8, 8],
hidden_nonlinearity=torch.tanh,
output_nonlinearity=None)
elif args.env == 'Acrobot':
policy = CategoricalMLPPolicy(env.spec,
hidden_sizes=[8, 8],
hidden_nonlinearity=torch.tanh,
output_nonlinearity=None)
else:
policy = GaussianMLPPolicy(env.spec,
hidden_sizes=[64, 64],
hidden_nonlinearity=torch.tanh,
output_nonlinearity=None)
print(policy)
value_function = GaussianMLPValueFunction(env_spec=env.spec,
hidden_sizes=(32, 32),
hidden_nonlinearity=torch.tanh,
output_nonlinearity=None)
if path.exists(model_path):
policy.load_state_dict(torch.load(model_path))
else:
torch.save(policy.state_dict(), model_path)
algo = BGPO(env_spec=env.spec,
policy=policy,
value_function=value_function,
max_path_length=max_length,
dist_type=args.type,
dist_pow=args.pow,
discount=discount,
lam=lam,
vf_minibatch_size=vf_minibatch,
minibatch_size = minibatch_size,
policy_lr=lr,
vf_lr = vf_lr,
c=c,
w=w,
m_lower = m_lower,
grad_factor = grad_factor,
center_adv=False,
g_max=g_max,
sch = sch,
entropy_method=entropy_method,
stop_entropy_gradient=stop_entropy_gradient,
log_dir=log_dir
)
runner.setup(algo, env)
runner.train(n_epochs=n_epochs, batch_size=batch_size)
run_task()