forked from Walleclipse/ChineseAddress_OCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstupid_addrs_rev.py
259 lines (227 loc) · 9.45 KB
/
stupid_addrs_rev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import re
import pandas as pd
import numpy as np
import pickle
from time import time
import heapq
from fuzzywuzzy import fuzz
from Levenshtein import distance
ADDRS_ORDER = {2: 1, 3: 900, 4: 24777, 5: 36135, 6: 43780, 7: 96953, 8: 123455, 9: 136751, 10: 166952,
11: 184057, 12: 194794, 13: 219650, 14: 234579, 15: 241632, 16: 245639, 17: 250251,
18: 252837, 19: 254605, 20: 256430, 21: 257702, 22: 258438, 23: 258911, 24: 259259,
25: 259460, 26: 259655, 27: 259764, 28: 259825, 29: 259868, 30: 259896, 31: 259911,
32: 259926, 33: 259929, 34: 259933, 35: 259936, 36: 259936, 37: 259939}
REVISE_DEGREE = 4 #修正到几级地址
CAL_SIMS_METHODS = {0: 'fuzzywuzzy', 1: 'Levenshtein'} # fuzzywuzzy:2s, Levenshtein:0.2s , fuzzywuzzy_partial_rati0:7s
THRESH_HOLDS = {'fuzzywuzzy': 80, 'Levenshtein': 97} # 完全匹配:fuzzywuzzy:100, Levenshtein:100
METHOD = CAL_SIMS_METHODS[1] # 在这里修改相似度算法,0:模糊匹配,1:编辑距离
THRESH = THRESH_HOLDS[METHOD]
#addrs_dir_path = 'libs/so_stupid_smart_adrs_lib_fuck.txt'
addrs_dir_path = 'addrs_libs/so_stupid_smart_adrs_lib_fuck.me.txt'
with open(addrs_dir_path, 'r', encoding='utf-8') as f:
addrs_lib = f.read()
addrs_lib = addrs_lib.split('\n')
stroke_dir_path = 'addrs_libs/strokes.txt'
with open(stroke_dir_path, 'r', encoding='utf-8') as f:
stroke_lib = f.read()
stroke_lib = stroke_lib.split('\n')
extra_addrs_dir = 'addrs_libs/full_address1.csv'
extra_lib = pd.read_csv(extra_addrs_dir, encoding='utf-8')
provinces = extra_lib[extra_lib['level']==1].loc[:,'Name']
cities = extra_lib[extra_lib['level']==2].loc[:,'Name']
def may_cut_messy(data):
flag = re.search('\d室', data)
if flag is not None:
data = data[:flag.span()[1]]
else:
flag = re.search('\d层', data)
if flag is not None:
data = data[:flag.span()[1]]
cutted_data = data
for site in provinces:
flag = re.search(site, data)
if flag is not None:
cutted_data = data[flag.span()[0]:]
return cutted_data
'''
for site in cities:
flag = re.search(site, data)
if flag is not None:
cutted_data = data[flag.span()[0]:]
return cutted_data
'''
return cutted_data
def re_prep(orig_data):
orig_data=may_cut_messy(orig_data)
punc = "[\s+\.\!\/_,$%^*(+\"\']+|[+——!\-\-(),。?、~@#¥%……&*()]+"
if len(orig_data) > 5 and '省' in orig_data[-2:]:
orig_data = orig_data[:-2] if orig_data[-2]=='省' else orig_data[:-1]
# if orig_data[-1] in ['.','-','、','.','*']:
# orig_data = orig_data[:-1]
#data_ = re.sub('[A-Za-z].*', '', data_)
#data_ = re.sub('[0-9].*', '', data_)
data_ = re.sub('市场.*', '', orig_data)
data_ = re.sub('城市花园.*', '', data_)
data_ = re.sub('小区.*', '', data_)
data_ = re.sub('社区.*', '', data_)
#data_ = re.sub('门市.*', '', data_)
data_ = re.sub('超市.*', '', data_)
data_ = re.sub('片区.*', '', data_)
data_ = re.sub('住宅区.*', '', data_)
data_ = re.sub('租区.*', '', data_)
#data_ = re.sub('城市.*', '', data_)
data_ = re.sub('夜市.*', '', data_)
data_ = re.sub('服务区.*', '', data_)
data_ = re.sub('活区.*|工区.*|广场.*', '', data_)
data_ = re.sub('一区.*', '', data_)
data_ = re.sub('二区.*', '', data_)
data_ = re.sub('三区.*', '', data_)
data_ = re.sub('四区.*', '', data_)
data_ = re.sub('A区.*|B区.*|C区.*|D区.*|E区.*', '', data_)
data_ = re.sub('.*?地址', '', data_)
if len(data_)>9 and '门市' in data_[8:]:
data_ = re.sub('门市.*', '', data_)
# pattern = '(.*行政区|.*自治区|.*省)?(.*?[市])?(.*?[市|县|盟|州])?(.*[镇|区|乡|街道|街|道])?(.*[村|委员会|委会|市|场|区|所|团|局])?(.*?路)?(\d+号)?'
pattern = '(.*?行政区|.*?自治区|.*?省)?(.*?市)?(.*?[县|区|州|市|旗])?(.*?街道|.*?[镇|乡|])?(.*?林场|.*?畜场|.*?牧场|.*?农场|.*[村|委员会|委会|市|场|区|所|团|局]])?(.*?路)?(\d+号)?'
# 1 1,2,3 2, 3, 4 4 4
data_split = re.split(pattern, data_)
data = ''
for index in range(1, len(data_split)):
if data_split[index] is not None:
if index <= REVISE_DEGREE:
data += data_split[index]
if len(data) >4 and ('镇' in data[2:-2] or '街道' in data[:-2]) and data[-1]=='州':
data = re.sub('镇.*', '镇', data)
data = re.sub('街道.*', '街道', data)
#tail = re.sub(punc, '', orig_data)[len(data):]
tail = orig_data[len(data):]
#data = re.sub(punc, '', data)
return data, tail
def stupid_match_single(data):
small_stupid_match = []
low = ADDRS_ORDER[min(max(len(data) - 3, 2),35)] - 1
up = ADDRS_ORDER[min(len(data) + 4, 37)] - 1
s_addrs_lib = addrs_lib[low:up]
for addrs in s_addrs_lib:
if METHOD == 'Levenshtein':
sims = 100 - distance(data, addrs)
if '市' in addrs or '省' in addrs:
sims2 = 100 - distance(data, addrs.replace('市','').replace('省',''))
if sims2 > sims:
sims = sims2
addrs = addrs.replace('市','').replace('省','')
else:
sims = fuzz.ratio(list(data), list(addrs)) # partial_ratio
s_dict = {'address': addrs, 'similarity': sims}
if s_dict['similarity'] == 100:
return [s_dict]
small_stupid_match.append(s_dict)
return small_stupid_match
def stupid_stroke_sims(s1, s2):
union_s = set(s1) & set(s2)
diff_s1 = set(s1) - union_s
diff_s2 = set(s2) - union_s
stroke_s1, stroke_s2 = 0, 0
for s in diff_s1:
unicode_ = ord(s)
if 13312 <= unicode_ <= 64045:
stroke_s1 += int(stroke_lib[unicode_ - 13312])
elif 131072 <= unicode_ <= 194998:
stroke_s1 += int(stroke_lib[unicode_ - 13312])
for s in diff_s2:
unicode_ = ord(s)
if 13312 <= unicode_ <= 64045:
stroke_s2 += int(stroke_lib[unicode_ - 13312])
elif 131072 <= unicode_ <= 194998:
stroke_s2 += int(stroke_lib[unicode_ - 13312])
return 100 - abs(stroke_s1 - stroke_s2) - 2*abs(len(s1) - len(s2))
def stupid_revise_split(data):
if len(data)==0:
return ''
addrs_match = stupid_match_single(data)
addrs_match = sorted(addrs_match, key=lambda x: x['similarity'], reverse=True)
candidates = heapq.nlargest(min(150,len(addrs_match)), addrs_match, key=lambda x: x['similarity'])
# print('\n original data: \n', orig_data, '\n revised data: \n',candidates[0] + tail)
# print(candidates)
# print(candidates[0])
candidates2 = []
for can in candidates:
thresh = THRESH - int(len(data) >= 10) + int(len(data) < 5) + int(len(data) < 4)
if can['similarity'] >= thresh and can['similarity'] >= candidates[0]['similarity']:
new_can = can
new_can['stroke_sims'] = stupid_stroke_sims(new_can['address'], data)
candidates2.append(new_can)
candidates2 = sorted(candidates2, key= lambda x: x['stroke_sims'], reverse=True)
if len(candidates2) == 0:
return data
candidates3 = []
for can in candidates2:
if can['stroke_sims'] >= candidates2[0]['stroke_sims']:
new_can = can
new_can['len'] = len(can['address'])
candidates3.append(new_can)
candidates3 = sorted(candidates3, key=lambda x: x['len'], reverse=True)
return candidates3[0]['address']
def stupid_revise(orig_data):
orig_time = time()
data, tail = re_prep(orig_data)
result = stupid_revise_split(data)
if len(result) > 0:
if len(tail) > 0 and result[-1] == tail[0] and result[-1] =='区' :
result = result[:-1]
final = result + tail
else:
final = orig_data
final = final.replace(' ','')
print('timing cosuming:', time() - orig_time)
return final
def test_stupid():
punc = "[\.\!\/_,$%^*(+\"\']+|[+——!\-\-(),。?、~@#¥%……&*()]+"
# bad_case_dir = '../address_classify/bad_case.txt'
bad_case_dir = 'address_line_result_name.txt'
with open(bad_case_dir, 'r', encoding='utf-8') as f:
bad_case = f.readlines()
bad_case = [re.sub(punc, '', x.replace('\n', '')) for x in bad_case]
pattern = '(.*行政区|.*自治区|.*省)?(.*?[市])?(.*?[区|县|盟|州])?(.*[镇|乡|街道|街|道])?(.*[村|委员会|委会|市|场|区|所|团|局])?(.*?路)?(\d+号)?'
# 1 1,2,3 2,3 3,4 4
recount = 0
al = 0
print('begin to test...', len(bad_case))
for index in range(len(bad_case)):
line = bad_case[index].split()
label = line[2]
data_ = re.split(pattern, label)
data_label = ''
for ii in range(len(data_)):
if data_[ii] is not None:
if ii < 5:
data_label += data_[ii]
recog = line[3]
data_ = re.split(pattern, recog)
data_recog = ''
for ii in range(len(data_)):
if data_[ii] is not None:
if ii < 5:
data_recog += data_[ii]
if data_recog == data_label or len(data_label) == 0 or len(data_recog) == 0:
print('so stupid ...')
continue
revise = stupid_revise(data_recog)
al += 1
line = str(al) + ':' + str(recount) + '\n' + data_label + '\n' + data_recog + '\n' + revise + '\n'
print(line)
with open(METHOD + '_log_8.19_1.txt', 'a', encoding='utf-8') as f:
f.write(line)
if revise == data_label:
print('Bingo +++++++++++++++++++++++++++++++++++++++++')
recount += 1
print('revise:', recount, 'in :', al)
print('all revise:', recount)
if __name__=='__main__':
st_time = time()
#test_stupid()
test_list = ['三县','辽宁省鞍山市岫岩满族自治县岫岩镇一街道(锦丝路农场二层住宅)','福建原泉州市惠安县螺城镇','南通市狼山镇街道陆洪社区','镇辽市科尔沁区','宝安区观澜街道新城社区', '杭集镇锦都扬州','常熟世茂•世纪中心一搜秀活力城3号1066','厦辽宁省铁岭市铁岭经济开发区柳条沟9分场']
for tl in test_list:
print(stupid_revise(tl))
print('all_time:',time()-st_time)