-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpointcloudprocessor.py
157 lines (118 loc) · 7.71 KB
/
pointcloudprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 27 15:27:10 2022
@author: Fletcher Wadsworth
@email: [email protected]
"""
# Module with class for performing desired point cloud processing routines.
# Processing routines are found in the processing_functions.py module, and configuration
# parameters are found in the processing_config.ini config file.
# Objects of this type are intended to work as a process in tandem with an
# openpylivox object to conduct data collection and processing routines in parallel.
# The specific processing functionality is contained in the processing_functions.py module.
# Care should be taken when adding or altering processing functions here or in
# the function definition module; since this is a mutliprocessing implementation,
# excessive changes may result in synchronicity problems between the processes,
# causing poorer performance or incorrect data in the worst case.
# Written by Fletcher Wadsworth for NCAR|UCAR, found at:
# https://github.com/fwadswor/SnowMeasureLivox-NCAR
# &&&&&&&&&&&&
# Need to put NCAR license/info/whatever else here
# &&&&&&&&&&&&
#Import necessary libraries
import numpy as np
#import os
import processing_functions as pf
import configparser
#import multiprocessing as mp
from multiprocessing import shared_memory
class PointCloudProcessor:
def __init__(self, gps_file_name, null_points, num_points, data_ready_for_proc, data_processor_empty, data_processor_not_copying):
#self.data_array = None
self._num_points = num_points
self.gps_file_name = gps_file_name
self.data_ready = data_ready_for_proc
self.data_processor_empty = data_processor_empty
self.not_copying = data_processor_not_copying
self.null_points = null_points
#Read collection config file for parameters and routines
self.conf = configparser.ConfigParser()
self.conf.read('processing_config.ini')
self.conf_sections = self.conf.sections()
#Obtain data array from shared memory
self.shared_memory_array = shared_memory.SharedMemory(name='SHARED_BUFF')
#Bind shared data array to numpy array
self.shared_array = np.ndarray((self._num_points,3), dtype='float32', buffer=self.shared_memory_array.buf)
print("PROCESSOR SAYS: shared_memory: ",self.shared_memory_array)
print("PROCESSOR SAYS: shape of shared_array: ",self.shared_array.shape)
#Load ground truth elevation measurements
#self.ground_elevation = np.load('FILENAME.npy')
self.ground_elevation = 3
#Flag to indicate routine is complete to parallel collection process
#self.processing_complete = False
print("PROCESSOR SAYS: Processor initialization complete!")
#def run_processing(self, data_array, data_ready=False):
def run_processing(self, records_per_session):
for n in range(records_per_session):
file_num = str(n)
#Wait until data is ready
print("PROCESSOR SAYS: Processor waiting for data!")
self.data_ready.wait()
#Set flag to indicate copying is in progress, not to start overwriting
self.not_copying.clear()
print("PROCESSOR SAYS: Processor copying data from shared array!")
#Copy data from shared array locally to process
self.data = np.copy(self.shared_array)
filename_bytes = self.gps_file_name.value
filename_string = filename_bytes.decode('utf-8')
nullPts = self.null_points.value
#Reset copying flag
self.not_copying.set()
#Set flag to True indicating that this process is occupied
self.data_processor_empty.clear()
#---------Ground/snow elevation estimation routine----------
#eliminate null points in array
rows = self.data.shape[0]
self.data = self.data[:rows-nullPts]
#Check if routine is enabled in config file
if (self.conf['GroundVolumeMeasure'].getboolean('enable')):
#Function call for GroundVolumeMeasure
save_above_ground = self.conf['GroundVolumeMeasure'].getboolean('save_above_ground')
print("PROCESSOR SAYS: Processor performing ground elevation routine!")
elevations, air_points = pf.GroundVolumeMeasure(self.data, self.ground_elevation, save_above_ground,
float(self.conf['GroundVolumeMeasure']['bin_size']),
float(self.conf['GroundVolumeMeasure']['min_threshold']),
self.conf['GroundVolumeMeasure'].getboolean('use_distance_params'),
float(self.conf['GroundVolumeMeasure']['max_distance_x']),
float(self.conf['GroundVolumeMeasure']['max_distance_y']))
#Generate binary filename and save file
print("PROCESSOR SAYS: Processor saving elevation data file!")
np.save(filename_string + '_elevations_'+file_num+'.npy',elevations)
if save_above_ground:
np.save(filename_string + '_air_pointcloud_'+file_num+'.npy', air_points)
#------------3D mesurement density bins routine------------
#Check if routine is enabled in config file
if (self.conf['Density3D'].getboolean('enable')):
#Make tuples from config. parameters for function call
print("PROCESSOR SAYS: Processor performing 3d density binning routine!")
bin_sizes = (float(self.conf['Density3D']['bin_size_x']),
float(self.conf['Density3D']['bin_size_y']),
float(self.conf['Density3D']['bin_size_z']))
use_distance_params = (self.conf['Density3D'].getboolean('use_distance_params_x'),
self.conf['Density3D'].getboolean('use_distance_params_y'),
self.conf['Density3D'].getboolean('use_distance_params_z'))
print('-'*40)
print("Use distance params in 3D binning routine: ",use_distance_params)
max_distances = (float(self.conf['Density3D']['max_distance_x']),
float(self.conf['Density3D']['max_distance_y']),
float(self.conf['Density3D']['max_distance_z']))
#function call for 3d density routine
density3d = pf.Binning3D(self.data, bin_sizes,
use_distance_params, max_distances)
#Generate binary filename and save data to file
print("PROCESSOR SAYS: Processor saving 3d density data file!")
np.save(filename_string + '_3d_density_'+file_num+'.npy', density3d)
#------ Put in more data processing function calls here if desired ------
#------------------------------------------------------------------------
#Set flag to indicate process is complete and ready for more data
self.data_processor_empty.set()