-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathsgemm128x128_asm_v1.cpp
439 lines (365 loc) · 11.6 KB
/
sgemm128x128_asm_v1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
//hipcc --amdgpu-target=gfx900 sgemm128x128.cpp -o sgemm
#include <assert.h>
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <unistd.h>
#include<iostream>
#include "hip/hip_runtime.h"
#define HIP_ASSERT(x) (assert((x)==hipSuccess))
#define M 8192
#define N 8192
#define K (8192)
#define NUM (M*K)
#define THREADS_PER_BLOCK_X 16
#define THREADS_PER_BLOCK_Y 16
#define THREADS_PER_BLOCK_Z 1
typedef float Float4 __attribute__((ext_vector_type(4)));
template<uint32_t offset>
inline __device__ void global_load(float* ptr, Float4 &val) {
if(offset == 0) {
asm volatile("\n \
global_load_dwordx4 %0, %1, off \n \
"
:"=v"(val)
:"v"(ptr)
);
return;
}
if(offset == 8) {
asm volatile("\n \
global_load_dwordx4 %0, %1, off offset:32 \n \
"
:"=v"(val)
:"v"(ptr));
}
}
template<uint32_t cnt>
inline __device__ void lgkmcnt(){
if(cnt == 0) {
asm volatile("\n \
s_waitcnt lgkmcnt(0) \n \
"::);
}
if(cnt == 1) {
asm volatile("\n \
s_waitcnt lgkmcnt(1) \n \
"::);
}
if(cnt == 2) {
asm volatile("\n \
s_waitcnt lgkmcnt(2) \n \
"::);
}
if(cnt == 3) {
asm volatile("\n \
s_waitcnt lgkmcnt(3) \n \
"::);
}
if(cnt == 4) {
asm volatile("\n \
s_waitcnt lgkmcnt(4) \n \
"::);
}
if(cnt == 5) {
asm volatile("\n \
s_waitcnt lgkmcnt(5) \n \
"::);
}
if(cnt == 6) {
asm volatile("\n \
s_waitcnt lgkmcnt(6) \n \
"::);
}
/**
* Disabling as 16 is to high to fit in 4bits (15 max)
if(cnt == 16) {
asm volatile("\n \
s_waitcnt lgkmcnt(16) \n \
"::);
}
*/
}
template<uint32_t cnt>
inline __device__ void vmcnt() {
if(cnt == 0) {
asm volatile ("\n \
s_waitcnt vmcnt(0) \n \
"::);
}
if(cnt == 1) {
asm volatile ("\n \
s_waitcnt vmcnt(1) \n \
"::);
}
if(cnt == 2) {
asm volatile ("\n \
s_waitcnt vmcnt(2) \n \
"::);
}
if(cnt == 4) {
asm volatile ("\n \
s_waitcnt vmcnt(2) \n \
"::);
}
}
inline __device__ void Matrix4x1X4(float* a, float* b, float* c, int a_id, int b_id){
for(int i = a_id; i < a_id+4; i++)
for(int j = b_id; j < b_id+4; j++)
{
asm volatile("\n \
v_fma_f32 %0, %1, %2, %0 \n \
"
:
:"v"(c[i*8+j]), "v"(a[i]), "v"(b[j])
);
}
}
inline __device__ void Matrix8x1X8(float* a, float* b, float* c){
Matrix4x1X4(a,b,c,0,0);
Matrix4x1X4(a,b,c,4,0);
Matrix4x1X4(a,b,c,0,4);
Matrix4x1X4(a,b,c,4,4);
}
#define UNROLL_SIZE 8
__global__ void sgemm_nt_128x128_lds_unroll_8_scheduling(const float* a, const float* b, float* __restrict__ c, const int m, const int n, const int k ){
int wk_tile_m = hipBlockIdx_y * 128 ;
int wk_tile_n = hipBlockIdx_x * 128 ;
int thread_tile_m = wk_tile_m + hipThreadIdx_y * 8;
int thread_tile_n = wk_tile_n + hipThreadIdx_x * 8;
int local_id = hipThreadIdx_y * 16 + hipThreadIdx_x;
int local_tile_m, local_tile_n;
local_tile_m = hipThreadIdx_x * 8;
local_tile_n = hipThreadIdx_y * 8;
__shared__ float a_shared[128*UNROLL_SIZE];
__shared__ float b_shared[128*UNROLL_SIZE];
float* a_ptr = NULL;
float* b_ptr = NULL;
int lds_write = 0;
//every 256 threads Load A 256x4
//every 256 threads Load B 256x4
//Continuous 2X threads Load 8x DWORDs
a_ptr = (float*)(a + (wk_tile_m + (local_id >> 1)) * k + (local_id &0x1) * 4);
b_ptr = (float*)(b + (wk_tile_n + (local_id >> 1)) * k + (local_id &0x1) * 4);
//LDS Stores 16x128x1
lds_write = (local_id >> 1) + (local_id & 0x1) * 128 * 4;
//PreLoad 128*8 DWORDs
Float4 readA;
Float4 readB;
//for(int i=0; i < 4; i++)
//{
// g_a[i] = a_ptr[i];
// g_b[i] = b_ptr[i];
//}
lgkmcnt<0>();
float sum[64];
// for(int i=0; i < 64 i++) sum[i] = 0 will have allocate 1 VGPR only
// Following code to load SUM from LDS with different vlaue, SUM will allocate 64 Values
// In short: SUM is initialized with 1 same value will have only 1 VGPR allocations
a_shared[local_id] = (local_id >> 6) * 1.0f;
__syncthreads();
for(int i=0; i <=64; i++){
sum[i] = a_shared[i];
}
global_load<0>(a_ptr, readA);
global_load<0>(b_ptr, readB);
vmcnt<0>();
a_shared[lds_write] = readA.x;
a_shared[lds_write + 128] = readA.y;
a_shared[lds_write + 256] = readA.z;
a_shared[lds_write + 384] = readA.w;
b_shared[lds_write] = readB.x;
b_shared[lds_write + 128] = readB.y;
b_shared[lds_write + 256] = readB.z;
b_shared[lds_write + 384] = readB.w;
float adata[8];
float bdata[8];
float adata2[8];
float bdata2[8];
//unroll
for(int kk=0; kk < k; kk+=UNROLL_SIZE) {
asm volatile("\n s_barrier\n"::);
if( (kk + UNROLL_SIZE) < k) {
a_ptr += 8;
b_ptr += 8;
global_load<0>(a_ptr, readA);
global_load<0>(b_ptr, readB);
}
lgkmcnt<0>();
#pragma unroll
for(int s =0; s < 1; s++)
{
s = 0;
for(int t=0; t < 4; t++){
adata[t] = a_shared[local_tile_m + t + s * 128];
bdata[t] = b_shared[local_tile_n + t + s * 128];
}
for(int t=4; t < 8; t++){
adata[t] = a_shared[local_tile_m + t + s * 128];
bdata[t] = b_shared[local_tile_n + t + s * 128];
}
s = 1 ;
for(int t=0; t < 4; t++){
adata2[t] = a_shared[local_tile_m + t + s * 128];
bdata2[t] = b_shared[local_tile_n + t + s * 128];
}
for(int t=4; t < 8; t++){
adata2[t] = a_shared[local_tile_m + t + s * 128];
bdata2[t] = b_shared[local_tile_n + t + s * 128];
}
//lgkmcnt<4>();
Matrix8x1X8(&adata[0],&bdata[0],&sum[0]);
s = 2 ;
for(int t=0; t < 4; t++){
adata[t] = a_shared[local_tile_m + t + s * 128];
bdata[t] = b_shared[local_tile_n + t + s * 128];
}
for(int t=4; t < 8; t++){
adata[t] = a_shared[local_tile_m + t + s * 128];
bdata[t] = b_shared[local_tile_n + t + s * 128];
}
//lgkmcnt<4>();
Matrix8x1X8(&adata2[0],&bdata2[0],&sum[0]);
s = 3;
for(int t=0; t < 4; t++){
adata2[t] = a_shared[local_tile_m + t + s * 128];
bdata2[t] = b_shared[local_tile_n + t + s * 128];
}
for(int t=4; t < 8; t++){
adata2[t] = a_shared[local_tile_m + t + s * 128];
bdata2[t] = b_shared[local_tile_n + t + s * 128];
}
//lgkmcnt<4>();
Matrix8x1X8(&adata[0],&bdata[0],&sum[0]);
s = 4 ;
for(int t=0; t < 4; t++){
adata[t] = a_shared[local_tile_m + t + s * 128];
bdata[t] = b_shared[local_tile_n + t + s * 128];
}
for(int t=4; t < 8; t++){
adata[t] = a_shared[local_tile_m + t + s * 128];
bdata[t] = b_shared[local_tile_n + t + s * 128];
}
//lgkmcnt<4>();
Matrix8x1X8(&adata2[0],&bdata2[0],&sum[0]);
s = 5;
for(int t=0; t < 4; t++){
adata2[t] = a_shared[local_tile_m + t + s * 128];
bdata2[t] = b_shared[local_tile_n + t + s * 128];
}
for(int t=4; t < 8; t++){
adata2[t] = a_shared[local_tile_m + t + s * 128];
bdata2[t] = b_shared[local_tile_n + t + s * 128];
}
//lgkmcnt<4>();
Matrix8x1X8(&adata[0],&bdata[0],&sum[0]);
s = 6 ;
for(int t=0; t < 4; t++){
adata[t] = a_shared[local_tile_m + t + s * 128];
bdata[t] = b_shared[local_tile_n + t + s * 128];
}
for(int t=4; t < 8; t++){
adata[t] = a_shared[local_tile_m + t + s * 128];
bdata[t] = b_shared[local_tile_n + t + s * 128];
}
//lgkmcnt<4>();
Matrix8x1X8(&adata2[0],&bdata2[0],&sum[0]);
s = 7;
for(int t=0; t < 4; t++){
adata2[t] = a_shared[local_tile_m + t + s * 128];
bdata2[t] = b_shared[local_tile_n + t + s * 128];
}
for(int t=4; t < 8; t++){
adata2[t] = a_shared[local_tile_m + t + s * 128];
bdata2[t] = b_shared[local_tile_n + t + s * 128];
}
//lgkmcnt<4>();
Matrix8x1X8(&adata[0],&bdata[0],&sum[0]);
vmcnt<0>();
a_shared[lds_write] = readA.x;
a_shared[lds_write + 128] = readA.y;
a_shared[lds_write + 256] = readA.z;
a_shared[lds_write + 384] = readA.w;
b_shared[lds_write] = readB.x;
b_shared[lds_write + 128] = readB.y;
b_shared[lds_write + 256] = readB.z;
b_shared[lds_write + 384] = readB.w;
//lgkmcnt<4>();
Matrix8x1X8(&adata2[0],&bdata2[0],&sum[0]);
}
}
//store
for(int i=0; i < 8; i++)
for(int j=0; j < 8; j++){
c[ (thread_tile_m + i) * n + thread_tile_n + j] = sum[i*8+j ];
}
}
using namespace std;
int main() {
float* hostA;
float* hostB;
float* hostC;
float* deviceA;
float* deviceB;
float* deviceC;
hipDeviceProp_t devProp;
hipGetDeviceProperties(&devProp, 0);
cout << " System minor " << devProp.minor << endl;
cout << " System major " << devProp.major << endl;
cout << " agent prop name " << devProp.name << endl;
cout << "hip Device prop succeeded " << endl ;
int i;
int errors;
hostA = (float*)malloc(NUM * sizeof(float));
hostB = (float*)malloc(NUM * sizeof(float));
hostC = (float*)malloc(NUM * sizeof(float));
// initialize the input data
for (i = 0; i < NUM; i++) {
hostA[i] = (float)sin(i);
hostB[i] = (float)cos(i);
}
HIP_ASSERT(hipMalloc((void**)&deviceA, NUM * sizeof(float)));
HIP_ASSERT(hipMalloc((void**)&deviceB, NUM * sizeof(float)));
HIP_ASSERT(hipMalloc((void**)&deviceC, NUM * sizeof(float)));
HIP_ASSERT(hipMemcpy(deviceA, hostA, NUM*sizeof(float), hipMemcpyHostToDevice));
HIP_ASSERT(hipMemcpy(deviceB, hostB, NUM*sizeof(float), hipMemcpyHostToDevice));
hipEvent_t start, stop;
hipEventCreate(&start);
hipEventCreate(&stop);
float eventMs = 1.0f;
for(int mnk=128;mnk<M+1; mnk+=128)
{
hipLaunchKernelGGL(sgemm_nt_128x128_lds_unroll_8_scheduling,
dim3(mnk/128, mnk/128 ),
dim3(THREADS_PER_BLOCK_X, THREADS_PER_BLOCK_Y),
0, 0,
deviceA ,deviceB ,deviceC, mnk, mnk, mnk);
hipEventRecord(start, NULL);
for (int i = 0; i < 1; i++)
{
hipLaunchKernelGGL(sgemm_nt_128x128_lds_unroll_8_scheduling,
dim3(mnk/128, mnk/128 ),
dim3(THREADS_PER_BLOCK_X, THREADS_PER_BLOCK_Y),
0, 0,
deviceA ,deviceB ,deviceC, mnk, mnk, mnk);
}
hipEventRecord(stop, NULL);
hipEventSynchronize(stop);
hipEventElapsedTime(&eventMs, start, stop);
//printf("elapsed time:%f\n", eventMs);
double ips = ( double)(mnk)*( double)mnk*( double)mnk /1024/1024/1024*1;
ips = ips / ( double)eventMs * 1000 ;
printf("sgemm_nt_128x128_lds_unroll16_scheduling:[%d x %d % d ] ==> %lf G FMAs/s, ms: %f\n", mnk,mnk,mnk, ips, eventMs);
usleep (100 *1000);
}
HIP_ASSERT(hipMemcpy(hostC, deviceC, NUM*sizeof(float), hipMemcpyDeviceToHost));
// verify the results
HIP_ASSERT(hipFree(deviceA));
HIP_ASSERT(hipFree(deviceB));
HIP_ASSERT(hipFree(deviceC));
free(hostA);
free(hostB);
free(hostC);
//hipResetDefaultAccelerator();
return errors;
}